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Computation of correlated ionic transport properties from molecular dynamics in the Green-Kubo
formalism is expensive as one cannot rely on the affordable mean square displacement approach. We
use spectral decomposition of the short-time ionic displacement covariance to learn a set of diffusion
eigenmodes that encode the correlation structure and form a basis for analyzing the ionic trajec-
tories. This allows to systematically reduce the uncertainty and accelerate computations of ionic
conductivity in systems with a steady-state correlation structure. We provide mathematical and
numerical proofs of the method’s robustness, and demonstrate it on realistic electrolyte materials.

I. INTRODUCTION

Understanding the transport of ionic species is of cen-
tral importance in a variety of fields ranging from physics
and biophysics[1, 2] to chemistry in general[3]. Of partic-
ular relevance for energy storage solutions, the design of
next-generation metal-ion batteries depends on the de-
velopment of fast ion-conducting and stable electrolyte
materials[4–6].

As the total ionic conductivity is proportional to the
number of charge carriers, high concentrations of ions
are typically targeted. Consequently, due to both high
concentrations and long-range Coulomb interactions, the
correlation between ions becomes non-negligible[7, 8].
The physics of ion correlations and effects on trans-
port properties are complex as they can be either
beneficial[9, 10] or detrimental[11, 12] depending on the
composition and concentrations. To capture these ef-
fects one can either apply an external electric field, or
collect the statistics of the total ionic flux fluctuation
at equilibrium[13, 14]. The former (non-equilibrium)
method is often problematic, especially for first-principles
dynamics simulations, due to the difficulty of including a
finite electric field in periodic systems, ensuring its linear-
response effect, and controlling the thermodynamic en-
semble of the driven system. [14, 15]. Consequently,
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the latter (equilibrium) method, based on the Green-
Kubo formalism[16], is often preferred. Even though the
method is exact in principle, the challenge is that it is
based on fluctuations of a single total flux value for the
entire system, and the conductivity estimate has a vari-
ance that increases with the system size. As a result, to
reach sufficient convergence of the statistics, long simula-
tions are needed, especially for large systems where total
flux fluctuations are small.

These limitations often lead to the erroneous adoption
of the Nernst-Einstein dilute-solution approximation. In
this case the variance of the estimate is lower and in-
dependent of the system size, leading to fast although
often incorrect (biased) estimates. If the short-range
correlations are strong, time-independent, and known a
priori, such as bonds between atoms in a molecular liq-
uid, with negligible inter-molecular correlations, displace-
ments of the molecules rather than atoms can be used
in the Nernst-Einstein formulation. In the case of elec-
trolytes, for example, the cluster Nernst-Einstein method
treats ionic clusters as uncorrelated charge-moving enti-
ties [17]. Equivalent to the Nernst-Einstein approach for
uncorrelated molecular diffusion, this approach reduces
the κ estimate variance. However, it relies on the prior
knowledge of the clusters’ composition and the assump-
tion of their immutability, which is not satisfied by a
wide range of liquid, polymer and single-ion solid-state
electrolytes. In the absence of perfect knowledge of clus-
ters, or dynamic nature of the interatomic correlations,
the expensive total flux approach is required.

In this work, we introduce a data-driven approach
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to learn the diffusive modes from the full interatomic
displacement covariance matrix via its spectral decom-
position, without prior assumptions about the range
and structure of the correlation, other than it is time-
independent. We then use the learned eigenvectors to
greatly reduce the variance and accelerate the estimation
of the ionic conductivity for correlated systems, with rig-
orous provable bounds on the bias and variance.

II. THEORY & METHOD

The conductivity κ can be written in an Einstein form
as:

κ =
F 2

6N 2
AV kBT

lim
τ→∞

∂

∂τ

∑
ij

qiqj〈Cij(τ)〉. (1)

Here F is the Faraday’s constant, NA the Avogadro’s
number, V the volume, kB the Boltzmann’s constant, T
the temperature, 〈· · · 〉 indicates an element-by-element
average (see below), and qi is the charge and ri (t) the po-
sition vector of particle i at time t. The position displace-
ment covariance matrix is Cij(τ) = [ri (τ + t)− ri (t)] ·
[rj (τ + t)− rj (t)] and indices i, j run over all particles.

The diagonal i = j represents each particle’s squared
displacements, and the inter-particle displacement
correlation is encoded in the off-diagonal i 6= j elements.
If the motions of particles i and j are uncorrelated, the
averaged, off-diagonal element 〈Ci 6=j(τ)〉 → 0 for values
of τ greater than the typical collision time scale. Conse-
quently, the relevant information about the diffusion of
an uncorrelated system lies exclusively on the diagonal
of 〈Cij(τ)〉. Replacing the 〈Ci 6=j (τ)〉 terms with zeros
is equivalent to the widely-adopted Nernst-Einstein
formulation[18], which is only correct in the infinitely
dilute uncorrelated limit. In this case each diagonal
value contributes independently to the variance of the
conductivity estimate, which is reduced by a factor of
N (number of particles) compared to the variance of
the total flux estimate of the conductivity[19]. Finally,
the 〈Cij(τ)〉 average is obtained by performing multiple
instances of the same experiment, and by implementing
time-window averaging[20]. The issue with the latter
averaging is that the statistics becomes poorer for longer
time-windows, i.e., if ∆t1 < ∆t2 then 〈Cij(∆t1)〉 is
averaged over more matrices, thus better converged,
than 〈Cij(∆t2)〉. Thus, determination of transport
properties becomes noisier, and long MD simulations
are needed to obtain the total flux conductivity estimate
within a reasonable uncertainty.

Our approach is based on the eigenvectors of 〈Cij(τ)〉
averaged using a short time interval τ = τ1 greater than
the minimum time needed for the system to reach the dif-
fusive regime. 〈Cij(τ1)〉 contains the most well-converged
information about the correlation of the system because
any time window τn > τ1 has fewer position-position

correlation matrices to average over. We then use the
learned spectral information to reduce the statistical vari-
ance of the estimate of κ for any time window τn > τ1.
The only assumption of our approach is that the corre-
lation structure of the system under investigation does
not change over time. If a system is in steady-state with
respect to the diffusion timescale, the correlation struc-
ture is determined by the chemistry at play as well as the
distribution of diffusion mechanisms available at a given
temperature.

Before describing the spectral denoising approach, we
clarify that, for our purposes, tracer and self-diffusion are
used interchangeably. However, we highlight that the two
quantities might differ when same-particle successive dif-
fusion jumps are correlated, such as in vacancy-mediated
diffusion (not discussed here)[21, 22]. Additionally, we in-
troduce the following terminology used throughout this
work.

Total flux, or full summation (FS) is the exact Green-
Kubo conductivity based on the summation over all i, j
elements of 〈Cij(τ)〉 as in Equation 1.

Nernst-Einstein self-diffusion (or MSD) approach
based on the trace of 〈Cij(τ)〉, assumes the cross-terms
i 6= j are zero. Nernst-Einstein conductivity is only cor-
rect for infinitely-dilute systems.

Spectral denoising (SD) refers to the method devel-
oped in this work, where the denoised 〈C∗ij(τ)〉 is used to
compute conductivity, as described below.

To quantify the degree of correlation in a given system,
the correlation factor fc = κFS/κMSD =

∑
ij Cij/

∑
i Cii is

introduced as the ratio of the FS to MSD estimate of
conductivity (it is the inverse of the Haven ratio, and it
is different from the same-particle correlation factor that
quantifies the departure from a random walk).

Now we outline the spectral denoising approach to re-
duce the noise in the calculation of correlated ionic con-
ductivity. (1) Diagonalize 〈Cij(τ1)〉, and obtain its eigen-
basis A. As 〈Cij(τ1)〉 is positive-definite and symmetric,
it is always possible to find a complete set of real, or-
thonormal eigenvectors, and its eigenvalues are positive.
(2) Rotate using A all 〈Cij(τn)〉, where τn > τ1, obtain-
ing Γ(τn) = AT 〈Cij(τn)〉A. As we assume the system
is in equilibrium and the correlation profile is station-
ary, we expect Γ(τn) to be nearly diagonal, with noise in
the off-diagonal terms only arising from finite sampling
of the time-window averages. This noise is confirmed
numerically to have zero expectation value, Section 4 of
the Supplemental Material[23]. (3) Set to zero the off-
diagonal terms of Γ(τn) obtaining Γ∗(τn), in the same
spirit as in the Nernst-Einstein. The key difference is
that we do this in the basis of natural diffusion eigen-
modes identified from the covariance matrix of the sys-
tem itself. (4) Rotate back Γ∗(τn) using the eigenbasis
A to obtain the denoised covariance matrix 〈C∗ij(τn)〉 to
then use in Equation 1. In addition to helping reduce
the conductivity variance, the eigenbasis A also provides
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a microscopic understanding of the fundamental modes
of diffusion in correlated scenarios, as discussed below.
The details regarding the choice of the optimal τ1, as
well as the mathematical robustness of this approach are
thoroughly discussed in Section 3 of the Supplemental
Material[23]. We rigorously prove that the SD method
outperforms the FS method if the eigenbasis A is ideal,
i.e., calculated from the true covariance matrix obtained
with infinite statistics of the diffusion process. In this
limit the SD approach yields unbiased results, while the
estimate variance is always strictly lower than that of FS:

Var

∑
ij

C∗ij

 = 2
∑
i

(
λiw

2
i

)2
≤ 2

(∑
i

λiw
2
i

)2

= Var

∑
ij

Cij

 .

Where λi ≥ 0 are the diagonal elements of the Γ matrix,
and wi is the sum of all elements of the ith eigenvec-
tor, i.e., column of A. In practice, 〈Cij (τ1)〉 is a finite-
sampling approximation to the ideal covariance matrix.
In this case, we can also prove that the SD approach out-
performs the FS - full details of the proofs and derivations
are given in Section 3 of the Supplemental Material[23].

III. VALIDATION & APPLICATIONS

1. Multivariate Gaussian Random Walk

In order establish the methodology in a controlled
model setting, we sample a multivariate Gaussian dis-
tribution to obtain correlated random displacement vec-
tors that mimic Brownian diffusion with exactly known
correlation. We consider a model with the covariance
matrix with Ci=j = α and Ci 6=j = β that represents a
homogeneous single-component correlated system. The
correlation factor is then defined as fc =

∑
ij Cij∑
i Cii

=
Nα+N(N−1)β

Nα . A system with fc = 1 possesses no cor-
relation (the sum of the off-diagonal covariance elements
equals 0, in this case β ≡ 0), while fc > 1 and 0 < fc < 1
corresponds to systems with negative and positive inter-
particle correlation, respectively. Thus, we expect the
SD approach to provide the greatest improvement over
the FS for fc = 1, while reducing to FS for fc � 1 and
fc � 1. More details are provided in Section 1 of the
Supplemental Material[23]. A time series of n Brownian
steps is then constructed by adding n sampled vectors,
and our goal is to estimate the slope D = ∂

∂τ

∑
ij〈Cij (τ)〉

from the sampled displacement trajectories. By modify-
ing the covariance matrix, we test the applicability and
robustness of our approach on a wide range of types and
strengths of correlations. More details on the Gaussian
sampling are discussed in Section 2 of the Supplemental
Material[23].

For our testing, we set the number of Brownian steps
to 1000, and a minimum of 10 averaged position-position
correlation matrices 〈Cij(τn)〉 to perform linear regression
to obtain the slopeD. The number N of simulated Brow-
nian walkers, representing diffusing particles, ranges from
3 to 500. We study fc in the range of 0.25 to 2.75. For
every (fc,N ) combination, we perform 100 independent
simulations of the Brownian walkers.

Figure 1 shows two ways the SD approximation can be
used to improve the determination of correlated trans-
port properties with respect to the exact theory. Panel

FIG. 1. Improvement of the SD estimates of the slope D
of the multivariate Gaussian walk model: (a), the standard
deviation reduction and, (b), the computational speedup of
the SD method, relative to the FS method.

(a) presents the reduction in the standard deviation of
the D estimate, calculated as the ratio between the stan-
dard error of the FS and that of the SD approach. Panel
(b) shows the computational speedup, calculated as the
ratio MFS

MSD
of the number of Brownian steps required to

achieve a given uncertainty by each method. We chose
MFS = 1000, thus the above expression conceptually re-
duces to how fast the SD method reaches the same accu-
racy as FS when 100 % of the trajectory is used for the
latter.

We make the following observations for this homo-
geneous single-component model example. (i) The off-
diagonal elements of Γ(τn) that are set to zero are in
fact distributed with a zero mean, confirming that they
can be regarded as noise (Section 4 of the Supplemental
Material[23]). This numerically confirms our theoretical
proof that the SD method is unbiased. (ii) Panels (a)
and (b) show that the SD method produces more signif-
icant improvement in the weak-to-moderate correlation
regimes, 0.5 < fc < 1.5. For strongly correlated single-
component systems, the SD approach does not provide a
considerable advantage over the FS method. Physically,
in the latter regimes fluctuations of the ionic flux com-
prise the whole system, thus the total center of mass dis-
placement of the system should be used to compute trans-
port properties. (iii) The advantage of the SD method
over the FS grows for larger system sizes. This is be-
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cause the fluctuations of the center of mass decrease for
larger systems, increasing estimate variance and thus re-
quiring longer trajectories to converge. (iv) Crucially,
the SD method always outperforms the FS method, as,
for both heatmaps, the values never fall below 1. Rig-
orous justification of this point, and derivations of the
proofs of variance reduction are given in Section 3 of the
Supplemental Material[23]. The last observation implies
that the SD approximation can be applied to any system
without prior assumptions on the correlation structure.

2. Lennard-Jones Liquid

We illustrate our approach by studying the physical
meaning of the eigenvectors of 〈Cij(τ1)〉. Additionally,
Section 7 of the Supplemental Material reports the cal-
culation ofD for a Lennard-Jones (LJ) interacting molec-
ular system. We perform molecular dynamics (MD) sim-
ulations to generate atomic trajectories of one dimer and
one trimer immersed in a bath of 500 monomers.

Figure 2 presents the study on the meaning of the
eigenvectors of 〈Cij(τ1)〉. Panel (a) represents the struc-

FIG. 2. Lennard-Jones liquid diffusion results: (a) struc-
ture of 〈Cij(τ1)〉 for a single dimer and trimer in a bath of
monomers; (b) and (c) covariance matrix eigenvectors.

ture of 〈Cij(τ1)〉, consisting of three components: the
diagonal, the inter-species off-diagonal, and the intra-
species off-diagonal entries. In this dilute case the inter-
species off-diagonal entries of (a) converge to zero. On
the contrary, the bonded atoms constituting the dimer
and trimer have strong immutable correlation as they are
bound to move together. As a result, 〈Cij(τ1)〉 has the
structure of a block diagonal matrix, as sketched in Fig-
ure 2(a), and the SD approach reduces to the Nernst-
Einstein description in the basis of molecules, which is
equivalent to the cluster Nernst-Einstein method [17].
Correspondingly, the eigenvectors of 〈Cij(τ1)〉 are par-
titioned into two sets. One set corresponding to the
diffusive drift of the center of mass of each molecule
(b), and another set corresponding to non-diffusive intra-
molecular motions, rotations and vibrations (c). Specif-
ically, for the dimer (highlighted in purple), there are
two eigenvectors. The first eigenvector, approaching(

1√
2
, 1√

2
, 0, 0, 0

)
, describes the center-of-mass motion of

the duplet, while the second,
(
−1√
2
, 1√

2
, 0, 0, 0

)
, corre-

sponds to internal motion not contributing to diffusion
and has vanishing eigenvalue in the limit of infinite statis-
tics. In general, any eigenvector whose eigenvalue and

vector components sum approach zero does not con-
tribute to diffusion. Thus, eigenvectors of 〈Cij(τ1)〉 have
intuitive physical interpretation as collective diffusion
modes of the system, and form an efficient basis for
analysing diffusive transport. This method thus addi-
tionally provides an unsupervised automatic way to iden-
tify diffusing clusters and molecules in the case of strong
short-range correlations, from only atomic motion with-
out any prior information.

3. Electrolyte Conductivity

As a realistic test of our method, we calculate the
conductivity κ for two battery electrolyte systems:
1. a lithium salt Li+[TFO]– in an ionic liquid (IL),
[Emim]+[TFO]– , and 2. an amorphous lithium phos-
phate ceramic, Li3PO4. For the former, we also investi-
gate the improvement in standard deviation of the esti-
mate as a function of temperature. Additionally, Section
8 of the Supplemental Material reports the same analysis
for a highly-correlated (fc ≈ 4.4), garnet, Li7La3Zr2O12.
As expected from Figure 1, the SD applied to the highly-
correlated garnet reduces to the FS for both computa-
tional cost and estimation. The above systems have
been shown to exhibit significant ion-ion correlation both
theoretically[9, 11, 24] and experimentally[12, 25, 26],
with fc from 0.6 (for ionic liquids) to as high as 5 (for
garnets). The computed fc are 0.8 and 1.2 for the ionic
liquid and solid state electrolyte, respectively. Conse-
quently, the MSD method would result in a 20 % overes-
timation and underestimation, respectively.

We perform MD simulations and analyze the atomic
displacement correlations to compute κ with the three
methods: trace, FS, and SD. The ionic liquid-based elec-
trolyte is composed of 178 1-Ethyl-3-methylimidazolium
([Emim]+), 19 Li+, and 197 trifluoromethanesulfonate
([TFO]– ) molecules, leading to a Li+-salt molar fraction
of 0.1. The interatomic potentials, the structure gener-
ation and equilibration protocols are inherited from our
previous works[8, 11, 27]. For Li3PO4, we create a su-
percell of the crystalline structure with 3456 atoms, 1296
of which are Li+; the force-field is from [28]. We note
that, while the force-field from Pedone et al compro-
mises between computational cost and accuracy, the SD
method can be equally applied to position-position co-
variance matrices obtained with any energy model, pro-
vided a diffusive timescale can be reached. The simulated
temperatures are 358 K for the ionic liquid and 600 K for
Li3PO4. Full details in Section 6 of the Supplemental
Material[23]. Panels (a) and (c) show the drift over
time of

∑
ij〈Cij (τ)〉 for the trace (green), FS (red), and

SD (blue) approaches. As in the other models discussed
above, the displacement correlation

∑
ij〈Cij(τ)〉 is signif-

icantly less noisy for the SD method compared to the
FS approach, and this translates to lower residuals, Fig-
ure 3(b,d) for both systems, with κ matching the FS
values. The uncertainty of the κ estimate is reduced by
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FIG. 3. SD method applied to the calculation of κ for two electrolyte systems: Li+[TFO]– in [Emim]+[TFO]– ionic liquid
(a,b,e), and amorphous Li3PO4 (c,d). (a) and (c) show

∑
ij〈Cij(τ)〉 as computed with the three different methods, (b) and (d)

show the residuals over the time range used to compute κ, and (e) shows the Arrhenius plot for the ionic liquid system, as well
as the SD variance reduction ratio.

∼ 70 % for both electrolyte systems.
Finally, Figure 3(e) shows the Arrhenius plot for the

ionic liquid system, as well as the ratio in standard devi-
ation between the SD and FS and trace, full and empty
diamonds, respectively. In this wide temperature range,
while providing unbiased estimates of the fully-correlated
conductivity, the SD approach outperforms the FS as it
reduces the uncertainty on the estimate by an average
of 90 %, providing performances comparable to those of
the Trace method as σTrace

σSD
≈ 1. A systematically lower

standard deviation for all temperatures will also yield a
better estimation of the activation energy since it is the
slope of the Arrhenius plot.

IV. CONCLUSIONS

In summary, we provide a superior approach capable of
reducing the uncertainty of conductivity estimates of cor-
related systems. This is achieved by leveraging the corre-
lation information encoded in the well-converged short-

time position-position covariance matrix. The spectral
analysis of the position-position covariance matrix is
shown to be an unsupervised way to uncover stable collec-
tive diffusion modes and particle clusters, automatically
revealing the microscopic physical mechanisms underpin-
ning ionic transport in complex systems, without prior
information as required for previously available methods.
Consequently, it enables accurate estimates of transport
properties from significantly shorter molecular dynam-
ics trajectories, by several orders of magnitude for larger
systems, while capturing the full correlation contribution
of the total flux, exact full summation approach. We de-
rive formal justification that the results are unbiased and
provide rigorous bounds on the reduction of the variance
of the estimates. In addition, we numerically demon-
strate the improvement and applicability of our approach
on controlled models and two realistic electrolyte sys-
tems: Li+[TFO]– in [Emim]+[TFO]– ionic liquid-based
and Li3PO4 solid-state battery electrolytes. These re-
sults open the possibility of rapid investigation of trans-
port characteristics in complex concentrated electrolytes
where correlation effects cannot be neglected.

We acknowledge useful discussions with Eric R. Fadel.
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