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We show that point defects in two-dimensional photonic crystals can support bound states in
the continuum (BICs). The mechanism of confinement is a symmetry mismatch between the defect
mode and the Bloch modes of the photonic crystal. These BICs occur in the absence of bandgaps
and therefore provide an alternative mechanism to confine light. Furthermore, we show that such
BICs can propagate in a fiber geometry and exhibit arbitrarily small group velocity which could
serve as a platform for enhancing non-linear effects and light-matter interactions in structured fibers.

Over the last three decades, photonic crystals (PhCs)
have been shown to exhibit exceptional confinement and
transport properties that exploit the existence of a pho-
tonic bandgap, a band of frequencies where no electro-
magnetic waves may propagate [1–4]. Photonic bandgaps
can inhibit spontaneous emission of embedded quantum
emitters [5–8], facilitate slow-light through band-edge op-
eration [9] or host localized defect modes that can serve as
high-Q resonators or waveguides. Confined defect modes
form the basis of many devices such as PhC fibers [10, 11],
spectral filters, and lasers [12, 13] and to achieve near-
perfect confinement, defect modes are constructed to lie
within photonic bandgaps so as to spectrally isolate them
from the extended states of the PhC. However, this ne-
cessitates the use of materials with a sufficiently high
refractive index to open complete gaps. An alternative
mechanism for confinement could circumvent the need
for bandgaps, enabling the use of many low-refractive in-
dex materials such as glasses and polymers as well as
increasing design flexibility for the realization of PhC-
based devices.

One possible way to achieve this is by using bound
states in the continuum (BICs). BICs are eigenmodes
of a system that, despite being degenerate with a con-
tinuum of extended states, stay confined – this confine-
ment may result from a variety of mechanisms [14]. For
example, modes of a PhC slab that lie above the light
line of vacuum and therefore could radiate, can remain
perfectly bound to the slab [15–20]. Previous designs
with BICs have mostly shown confinement of a mode
in one dimension lower than that of the environment.
Recently, corner-localized BICs were predicted and ob-
served in two-dimensional chiral-symmetric systems with
higher-order topology [21, 22]. However, chiral (sub-
lattice) symmetry is, in general, strongly broken in all-
dielectric PhCs. Indeed, confinement in the continuum
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FIG. 1. (a) The unit cell of a two-dimensional PhC consisting
of circular discs. The symmetry operators of the C4v point
group are labelled. (b) The Brillouin zone of the PhC show-
ing its HSPs and the little groups under which the HSPs are
invariant. The solid color consists of all momenta that lie
within the irreducible Brillouin zone.

has to this point not yet been achieved in point defects
embedded inside multi-dimensional PhCs.

In this work, we predict the existence of BICs that
are exponentially confined to point defects in a two-
dimensional PhC environment. The defect cavity and
bulk PhC are designed such that radiation leakage is pro-
hibited due to a symmetry mismatch between the defect
mode and the ambient continuum states. The BICs pro-
posed here are protected by the simultaneous presence
of time-reversal symmetry (TRS) and the point group of
the lattice and as such are robust as long as these symme-
tries are maintained. As an application for these BICs,
we also show how they can circumvent bandgap require-
ments and be used as propagating fiber modes with ar-
bitrarily small group velocity in a low-contrast slow-light
PhC fiber.

We draw a distinction between our BICs and the previ-
ously reported defect modes degenerate with Dirac points
in 2D PhCs [23–28]. In the latter case, the confinement of
light to a defect site is due to a vanishing density of states
at the Dirac point, which is where that confined mode’s
frequency lies. Characteristically, such defect modes ex-
hibit weak confinement due to the algebraic mode profile
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away from the defect site. In contrast, the defect modes
presented here are bona fide symmetry protected BICs
that are exponentially localized to the defect site.

Consider a two-dimensional PhC consisting of a square
lattice of discs with dielectric constant ε and radius r
embedded in vacuum. This PhC, as shown in Fig. 1
(a) is invariant under 90◦ rotations (C4, C2

4 , C−14 ), and
reflections along the x, y axes and two diagonals (σx,
σy, σd1 , σd2). These symmetry operations constitute
the C4v point group. The irreducible Brillouin zone of
this lattice contains three inequivalent high symmetry
points (HSPs), namely, Γ = (0, 0), X = (π/a, 0) and
M = (π/a, π/a), as shown in Fig. 1 (b). The HSPs
Γ and M are invariant under the full C4v group, while
X is invariant only under the little group, C2v. Eigen-
modes of the PhC at a HSP transform according to the
irreducible symmetry representations (irrep) of the group
under which the HSP is invariant. The X point has four
possible one-dimensional irreps (a1, a2, b1, b2) with char-
acter table as shown in Table I. Similarly, the Γ and M
points have four one-dimensional irreps (A1, A2, B1, B2)
and one two-dimensional irrep (E) with character ta-
ble as shown in Table II [2]. The eigenmodes of a C4v

symmetric PhC that transform according to the two-
dimensional irrep (E) of the C4v point group, commonly
manifest as quadratic two-fold degeneracies at Γ and M
in the presence of TRS. When C4v is broken, this degen-
eracy splits into two Dirac points as long as inversion and
TRS are retained. However, breaking TRS can lift the
degeneracy completely [29].

C2v I C2 σx σy

a1 1 1 1 1
a2 1 1 −1 −1
b1 1 −1 1 −1
b2 1 −1 −1 1

TABLE I. Character table for the C2v point group.

C4v I 2C4 C2 2σx,y 2σd1,d2

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 −1 1 1 −1
B2 1 −1 1 −1 1
E 2 0 −2 0 0

TABLE II. Character table for the C4v point group.

We now describe the general mechanism for creating
defect-localized BICs. By changing the geometric param-
eters of the lattice, the band dispersion of a C4v and TRS-
symmetric PhC can be designed such that the two-fold
degeneracy at either Γ or M is spectrally isolated from
other bands. In a large system consisting of many unit
cells of such a PhC (a supercell), a single defect site with
radius rd 6= r is introduced at the center. This creates
modes with a significant support on the defect site that
generally radiate by hybridizing with the bulk states of

the PhC, forming leaky resonances that are characterized
by a complex frequency with a negative imaginary part.
The frequency of such modes can be tuned by changing
the parameters of the defect site such as size or dielectric
constant. When the real part of the frequency of the de-
fect mode exactly matches that of the spectrally-isolated
two-fold degeneracy of the bulk, it becomes a perfectly
confined BIC provided that the defect mode transforms
according to a one-dimensional irrep that is orthogonal
to the two-dimensional irrep of the bulk. The presence of
this BIC can be inferred from the vanishing of the imagi-
nary part of the frequency and hence a diverging quality
factor, Q = −Re(ω)/2Im(ω), of the defect mode.

To demonstrate this, we simulate this system using
finite-difference time domain method (FDTD) as imple-
mented in MEEP [31]. The bulk band requirements are
easily met in a simple square lattice of discs with dielec-
tric constant ε = 4 and radius r/a = 0.275, where a is the
lattice constant in both x and y directions. The chosen
values of ε and r/a allow the spectrally-isolated two-fold
degeneracy to occur between TM bands 10 and 11 at the
M point as shown in Fig. 2 (a). The photonic density
of states (DoS), also shown in the same figure, is given
by DoS(ω) =

∑
n

∫
k∈BZ

δ[ω − ωn(k)]dk, where ωn(k) is
the frequency eigenvalue at the momentum k and band
index n. Since each band undergoes an extremum at the
degeneracy, the DoS exhibits a jump-discontinuity-type
Van Hove singularity between two finite and non-zero val-
ues. The non-vanishing set of states at the degeneracy
forms the continuum within which a BIC can be created.

In a large supercell, we now introduce a defect by
changing the radius (rd 6= r) of a single disc in the cen-
ter of the supercell. As we scan the values of rd, a BIC
emerges for the specific value of the defect radius that
corresponding to a mode with the exact frequency of the
bulk degeneracy. This is seen from the sharp divergence
of the Q-factor of the defect mode as shown in Fig. 2
(b). Examining the mode profile shown in the inset of
Fig. 2 (c) reveals that the defect mode transforms ac-
cording to the irrep A1 which is prevented from mixing
with the basis modes of the orthogonal two-dimensional
irrep, E, of the bulk. Moreover, the mode shows very
strong exponential localization to the defect site which
can be seen by plotting the intensity envelope as shown
in Fig. 2 (c). Another important feature of this BIC is
its occurrence above ωa/2πc = 1. This implies that the
lattice constant of the bulk PhC is larger than the wave-
length of the BIC mode, a property which could prove
useful for fabrication, because features sizes would need
not be subwavelength.

To conclusively show that this BIC is indeed symmetry
protected, we change the defect site from a disc to a filled
ellipse, which reduces the symmetry of the supercell from
C4v to C2v. Due to this deformation, the degeneracy be-
tween the two modes that formed the two-dimensional
irrep, E, of C4v is very slightly lifted and the resultant
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FIG. 2. (a) The TM bands and photonic DoS of a square lattice of dielectric discs of ε = 4 and r/a = 0.275 calculated using
MPB [30]. The spectrally-isolated two-fold degeneracy is marked with an arrow. (b) Quality factor (Q) of the defect mode as a
function of defect radius (rd). The sharp divergence in Q indicates the existence of a BIC at rd/a = 0.224. The inset shows the
dependence of the defect mode frequency on rd. (c) The E-field intensity envelope of the BIC showing exponential localization
as a function of distance (along the y-axis) from the defect site. The inset shows the z-component of the E-field of the BIC,
extracted from FDTD simulations. (d) The E-field intensity envelope of the resonance when the symmetry of the supercell is
reduced from C4v to C2v. The inset shows the z-component of the E-field of the resonance, extracted from FDTD simulations.

non-degenerate modes have the one-dimensional irreps b1
and b2 of C2v. As before, we vary the defect size to tune
the frequency of the defect mode and find a maximum
Q ∼ 104 indicating that the mode is not a BIC but a
resonance. Indeed, the field pattern of the defect mode
as shown in the inset of Fig 2 (d), transforms according
to b2, which coincides with one of the irreps of the bulk
enabling the defect and bulk modes to couple and cre-
ate a leaky resonance with a finite Q (see Supplementary
Material). This is also evident from the intensity enve-
lope of the resonance as shown in Fig 2 (d) that markedly
demonstrates the lack of exponential confinement to the
defect site. Displacing the defect site away from the cen-
ter also breaks the C4v symmetry of the supercell and has
a similar effect of degrading the Q-factor of the mode (see
Supplementary Material).

The symmetry mismatch between the defect mode and
bulk bands requires the existence of a spectrally-isolated
two-fold degeneracy in the bulk PhC so the question nat-
urally arises: how easy is it to design this bulk band re-
quirement? It is clear from our findings that even simple
PhC designs are able to satisfy the requirements for rea-
sonably low dielectric contrast and in fact, the feature in
the TM bands of the PhC discussed in Fig. 2 (a) persists
down to ε = 3 for a slightly smaller value of r/a. Further-
more, such quadratic degeneracies can also occur at the
Γ point in C3v and C6v symmetric lattices, forming two-
dimensional irreps of the respective point groups. In the
Supplementary Material, we outline a method for find-
ing optimized structures with tunable parameters that
exhibit such degeneracies.

For traditional defect modes in 2D PhCs, it suffices to
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FIG. 3. (a) The k‖-band structure of the defect-free PhC fiber at kz = 0.18 (2π/a‖). The spectrally-isolated two-fold degeneracy
is marked with an arrow. (b) D-field intensity profile of a solid-core fiber BIC mode that occurs at kz = 0.18 (2π/a‖). (c)
D-field intensity profile of a hollow-core-like fiber BIC mode.

have a bandgap for one polarization, either TE or TM,
since they constitute orthogonal subspaces that do not
mix. However, for applications such as PhC fibers, (i.e.,
where the 2D pattern described above is extruded in the
third direction, z, and kz 6= 0 generally), the distinction
between TE and TM is lost and one requires an over-
lapping bandgap for both polarizations to confine defect
modes. In particular, slow-light PhC fibers rely on the
existence of a complete bandgap at kz = 0 which persists
for a small range of kz [32–34]. The arbitrarily small
group velocity of the propagating modes in such fibers is
achieved by operating near the kz = 0 band edge. These
slowly-propagating modes can then be used to strongly
enhance interactions of light with either the dielectric ma-
terial itself or an infiltrated material [35, 36], depending
on whether the fiber hosts a solid or hollow core. Thus,
the design of these fibers requires a high dielectric con-
trast to open a complete bandgap at kz = 0. To the best
of our knowledge, the smallest contrast for which a com-
plete bandgap exists for 2D PhCs is for ε = 4.41 [37].
We now extend the idea of point-defect-localized BICs
to propagating slow-light fiber modes, circumventing the
requirement for a complete bandgap.

The fiber design that we propose is identical to an
extruded version of the 2D PhC discussed before, now
consisting of cylinders extended along the direction of
propagation in the fiber. However, since the distinction
between TE and TM polarizations is lost, the spectrally-
isolated two-fold degeneracy of the bulk must occur in the
full band structure in order to create a BIC. This is easily
achieved in our structure for a range of kz values around
0. For instance, Fig. 3 (a) shows the band structure of
the fiber with ε = 4, r/a = 0.2755 at kz = 0.18 (2π/a‖),
where a‖ is the lattice constant in the x, y plane. As be-
fore, we introduce a defect site and tune the radius rd and
find a BIC at rd/a = 0.230 for this particular value of kz.
The field profile of the BIC is plotted in Fig. 3 (b), form-

ing a solid-core mode and displaying strong confinement
to the defect site. Since the spectrally-isolated two-fold
degeneracy persists down to kz = 0, the group velocity
of this BIC along the length of the fiber (vgz = dω/dkz)
can be made arbitrarily small with an appropriate choice
of rd. It is also possible to create a hollow-core-like fiber
mode where the BIC has reasonable support in the air
region. To achieve this, we omit the central defect site
and instead tune the radius of the nearest eight sites uni-
formly so as to maintain C4v and find a BIC as shown in
Fig. 3 (c).

The BICs presented here could be experimentally real-
ized in a variety of systems. For example, these principles
could be applied to create high-Q nanocavities in gapless
PhC slabs where some vertical leakage is unavoidable but
in-plane leakage could be suppressed through the sym-
metry mismatch mechanism. Functionally, these modes
would behave similarly to run-of-the-mill PhC slab-based
cavities that rely on a bandgap but could be realizable
in alternative structures with potentially lower dielectric
contrast. Similarly, the PhC fiber design discussed here
could be implemented straightforwardly by complex fiber
drawing techniques [11]. Furthermore, such isolated de-
generacies are also known to occur in 3D PhCs which
could lead to true gapless confinement of light in all di-
rections such as in structures that are precursors to ones
with Weyl points [38–41]. Evidently, these BICs rely
solely on symmetry considerations and can also be read-
ily realized using other periodic systems such as acoustic
crystals, waveguides [22, 42] and coupled resonator ar-
rays.

In conclusion, we have proposed BICs that are expo-
nentially localized to defects beyond bandgaps in both 2D
PhCs and structured fibers. The PhC slow-light fiber im-
plementation relaxes the need for bandgaps at kz = 0 and
thus allows for a wider range of materials to be used for
their implementation. The results presented here have
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consequences for the general design of PhC-based devices
since the requirement for finding bandgaps could poten-
tially be replaced with finding isolated degeneracies at
HSPs, which occur more commonly, at lower dielectric
contrast and at higher frequencies in the band structure.
Furthermore, it may be possible to use the BIC mech-
anism to realize hinge modes in higher order photonic
topological insulators [21, 22, 43–45] due to their struc-
tural similarity with PhC fiber modes.
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