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We report near-deterministic generation of two-dimensional (2D) matter-wave Townes solitons,
and a precision test on scale invariance in attractive 2D Boses gases. We induce a shape-controlled
modulational instability in an elongated 2D matter-wave to create an array of isolated solitary waves
of various sizes and peak densities. We confirm scale invariance by observing the collapse of solitary-
wave density profiles onto a single curve in a dimensionless coordinate rescaled according to their
peak densities, and observe that the scale-invariant profiles measured at different coupling constants
g can further collapse onto the universal profile of Townes solitons. The reported scaling behavior
is tested with a nearly 60-fold difference in soliton interaction energies, and allows us to discuss the
impact of a non-negligible magnetic dipole-dipole interaction (MDDI) on 2D scale invariance. We
confirm that the effect of MDDI in our alkali cesium quasi-2D samples effectively conforms to the
same scaling law governed by a contact interaction to well within our experiment uncertainty.

A scale-invariant system possesses self-similar features
that can occur at all scales, where system observables
exhibit general scaling behaviors. Weakly interacting
two-dimensional (2D) Bose gases offer unique opportu-
nities to explore scale invariance (SI) in a many-body
system, because the effective contact interaction poten-
tial and single-particle dispersion both have the same
scale dependence [1, 2]. The ability to tune the con-
tact interaction strength g via a magnetic Feshbach reso-
nance [3] further allows for explorations of SI over a wide
parameter range, both in equilibrium and from out-of-
equilibrium dynamics. At repulsive interactions (g > 0),
SI has been observed in density observables associated
with the equations of states, in normal and superfluid
phases, and across the Berezinskii-Kosterlitz-Thouless
superfluid phase transition, offering a rich understanding
of scale-invariant 2D many-body phases [4–9]. However,
2D Bose gases with attractive interactions (g < 0) have
rarely been studied primarily due to an instability to col-
lapse under typical experiment trap conditions [10, 11].
When and how does SI manifest in the unstable attrac-
tive regime has remained relatively unexplored.

One intriguing example occurs deep in quantum degen-
eracy, when attractive 2D Bose gases form matter-waves
that may sustain a scale-invariant, quasi-stationary state
– a prediction originally made for self-focusing opti-
cal beams called the Townes soliton [12]. Under SI,
a Townes soliton may form at any length scale λ, but
only under an isotropic wave function ψ(r) = φ(r/λ)/λ,
where φ(r̃) is a dimensionless Townes profile [13]. The
atom number in a Townes soliton is necessarily fixed at
Nts =

∫
|φ(r̃)|2dr̃ ≈ 5.85/|g|. At this atom number the

matter-wave dispersion intricately balances against the
mean field attraction. The main challenge for realiz-
ing scale-invariant 2D solitons is that they are unstable
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[14, 15], and have not been realized in equilibrium. In
nonlinear optics, a Townes profile has been partially ob-
served in a collapsed optical wave [16].

To date, an experimental demonstration of SI in 2D
matter-wave solitons has remained elusive. Recently in
Ref. [17], it is observed that an interaction quench in a
homogeneous 2D superfluid to g < 0 can induce a mod-
ulational instability (MI) [18], which fragments a large
sample into many density blobs with atom numbers uni-
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FIG. 1. Formation of 2D matter-wave soliton trains. (a) An
elongated 2D Bose gas of peak density ni ≈ 20/µm2 is held at
an initial coupling constant gi ≈ 0.129 and quenched to a new
coupling constant g ≈ −0.0215, with simultaneous removal of
the horizontal confinement in the x-y plane. Arrays of solitary
waves are observed in shot-to-shot images in (b), taken after
a 50 ms wait time. A different sample in (c) is prepared at a
much lower initial peak density ni ≈ 6/µm2 and quenched to
g ≈ −0.0075, similarly generating solitary waves as observed
in (d). Image size in (a,b): 19×77 µm2. Image size in (c,d):
40×160 µm2.
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versally around Nts. Townes solitons of similar peak den-
sities (and sizes) are observed to form randomly from
the blobs. However, dispersion, collisions and collapse of
many blobs generate remnants throughout a large sam-
ple, making confirmation of SI in solitons a nontrivial
task. Besides soliton formation in quench dynamics, an
optical technique [19] has been developed very recently
to deterministically imprint a Townes soliton in a two-
component planar Bose gas [20].

In this letter, we report a simple recipe to create iso-
lated 2D solitons with peak densities differing by 20-fold,
thus enabling unambiguous experimental tests on SI. Our
method induces controlled MI in an elongated 2D su-
perfluid that fragments into an array of solitary waves
nearly free from background remnants. Using these sam-
ples, we confirm SI by observing their density profiles
collapse onto a single curve in a dimensionless coordi-
nate r̃ =

√
npr, where np is the peak density that sets

the length scale λ = 1/
√
np. We further confirm that

the scale-invariant density profiles measured at different
coupling constants g can collapse onto a universal curve,
which agrees remarkably well with the Townes profile.
Furthermore, we discuss the effect of a non-local MDDI in
our quasi-2D geometry, which conforms to the same scal-
ing law governed by a contact interaction to well within
our experiment uncertainty.

Our experiment begins with a 2D superfluid formed
by a variable number of cesium atoms (N ≈ 6 × 103 ∼
1.5 × 104) polarized in the |F = 3,mF = 3〉 hyperfine
ground state and with a low temperature T . 8 nK.
The superfluid is trapped inside a quasi-2D box poten-
tial formed by all repulsive optical dipole beams with an
adjustable horizontal box confinement. The tight verti-
cal (z-) confinement freezes all atoms in the harmonic
ground state along the imaging axis, giving a trap vibra-
tional frequency ωz = 2π × 2.25(1) kHz and a harmonic
oscillator length lz ≈ 184 nm. The 2D coupling constant
g =
√

8πa/lz is controlled by a tunable s-wave scattering
length a, initially prepared at g = gi ≈ 0.129 and later
quenched to a negative value g < 0 via a magnetic Fes-
hbach resonance [3]. The coupling constant is calibrated
with an uncertainty δg ≈ ±0.0005 [13]. Following the
interaction quench and simultaneous removal of the hor-
izontal box confinement, the 2D gas is allowed to evolve
freely in the horizontal plane for a hold time of ∼ 50 ms,
which is sufficiently long to allow samples to fully frag-
ment but short enough so that there is not a significant
atom loss that could make a soliton unstable. Absorption
imaging is then performed to record the density distribu-
tion; see Fig. 1 for sample images. The image resolution
is experimentally determined to be ∼ 1.5 µm (1/e2 Gaus-
sian width) [21, 22].

To form a single array of isolated 2D solitons, we reduce
the initial width of a superfluid so that MI can only man-
ifest along its long axis (y-axis). As shown in Fig. 1(a),
the sample has an initial peak density ni ≈ 18/µm2,
with a length L ≈ 65 µm and a root-mean-square width
w ≈ 3 µm . ξ, where ξ = π/

√
2ni|g| ≈ 3.6 µm is
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FIG. 2. Soliton formation statistics. (a) Probability Ptot of
finding Ns solitons after the quench, evaluated using 68 sam-
ples as shown in Fig. 1(b). (b) Occurrence of solitons with
peak density np (Bin size: 2/µm2). (c) Average peak den-
sity n̄p versus position along the long (y-)axis (filled circles).
Error bars represent standard deviation. Solid curve shows
the density ni of the initial sample through the long axis. (d)
Probability for observing a soliton at position y in a quenched
sample (Bin size: 4 µm).

the half-wavelength of the most unstable mode in MI
[17] when we quench to g ≈ −0.0215. Following the in-
teraction quench, arrays of isotropic solitary waves are
observed to form near-deterministically in every sample
[Fig. 1(b)]. These well-separated solitary waves allow us
to perform counting statistics (Fig. 2) and measure their
density profiles. We confirm these solitary waves are
Townes solitons by performing associated scaling tests
(Figs. 3 and 4). In another set of examples as shown in
Fig. 1(c-d), we prepare superfluids with much lower ini-
tial peak densities ni ≈ 5/µm2, and quench the coupling
constant to a less attractive value g ≈ −0.0075. Arrays
of solitons more than twice the size of those found in
Fig. 1(b) can be identified in (d).

In all examples shown in Fig. 1, many solitons appear
to be missing randomly from the observed arrays. This
may be caused by imperfect soliton formation from MI,
and the missing ones may have either dispersed or col-
lapsed. In addition, collisions between neighboring soli-
tons can trigger collapse and induce rapid loss [17, 23]. In
Fig. 2, we analyze soliton formation statistics from our
quench recipe, using images as shown in Fig. 1(b). In
more than 98 % of the samples analyzed, we find Ns ≥ 1
total number of solitons [Fig. 2(a)]. Thanks to a nearly
remnant-free background, we collect solitons of peak den-
sities over a finite range from np ∼ 8/µm2 to ∼ 30/µm2

[Fig. 2(b)]. This allows us to study their density scaling
behavior. On the other hand, the average peak density
n̄p ≈ 20/µm2 [Fig. 2(c)] is comparable to the initial den-
sity ni ≈ 18/µm2, and is approximately uniform along
the sample. It is more likely to find solitons near the
edge, as shown in the probability distribution p(y) in
Fig. 2(d), potentially due to a boundary effect that re-
duces soliton collision loss. We observe that low density
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FIG. 3. Testing scale invariance. (a) Images in the top panel,
from left to right, show solitons of low to high peak densi-
ties, selected from samples as shown in Fig. 1(b). Image size:
19×19µm2. Their radial density profiles n(r) (filled circles, in-
set) approximately collapse onto a single curve in the rescaled
coordinate r̃ =

√
npr and ñ = n/np. Error bars include statis-

tical and systematic errors. Shaded band shows the standard
deviation of 20 rescaled radial profiles around their mean 〈ñ〉
(solid curve). (b) similarly shows soliton images and profiles
observed in Fig. 1(d). Image size: 60× 60µm2.

samples as shown in Fig. 1(d) generate solitons with peak
density 2/µm2 . np . 13/µm2.

We collect solitons of different sizes from our quenched
samples to perform the scaling tests. In Fig. 3, we show
sample soliton images, sorted with np monotonically in-
creasing from 7/µm2 to 30/µm2 for g ≈ −0.0215 [in (a)]
and from 1.5/µm2 to 9/µm2 for g ≈ −0.0075 [in (b)].
The soliton size appears to monotonically decrease with
respect to the increasing peak density, as shown in the
radial density profiles n(r) in Fig. 3 insets.

We test the SI hypothesis by rescaling the density pro-

files n(r) in a dimensionless form and search for a uni-
versal behavior. In Fig. 3, we plot the rescaled density
ñ = n/np as a function of the dimensionless radial posi-
tion r̃ =

√
npr. Indeed, despite a large variation in soli-

ton size, we observe that all profiles measured at a fixed
g collapse onto a single curve. No significant deviation
from the collapse behavior is observed at any r̃.

To quantify the goodness of the profile collapse and
confirm SI, we evaluate the reduced chi-square χ2

ν =∑
i [ñi − 〈ñ〉i]2 /νσ2

i from ∼ 20 rescaled profiles, where
〈ñ〉 is the mean profile, σi is data uncertainty, and the in-
dex i labels data points collected within a test radius, giv-
ing in total ν ≈ 190 degrees of freedom. At g ≈ −0.0215
as in Fig. 3(a), we find χ2

ν ≈ 1.5 for r̃ . 25; for the pro-
files at g ≈ −0.0075 as in Fig. 3(b), we obtain χ2

ν ≈ 1.4
for r̃ . 35. The chi-square test χ2

ν ∼ O(1) suggests a
universal collapse and supports the SI hypothesis from
these randomly collected solitons. Nevertheless, χ2

ν & 1
indicates that the standard deviation of collapsed pro-
files slightly exceeds the estimated measurement uncer-
tainty. Since the statistical deviations from the mean pro-
file show no clear dependence on soliton size or peak den-
sity [see also Fig. 4(b)], the chi-square test suggests not
all quench-induced solitary waves possess perfect scale-
invariant profiles.

We now show that the scale-invariant density distri-
butions measured at different attractive interactions can
be further rescaled to display a universal waveform – the
Townes profile. Here, the coupling constant can be ab-
sorbed into the length scale factor λ such that, when
plotted in the rescaled coordinate R =

√
|g|r̃, the den-

sity displays a universal profile ñ = |φ(R)|2. The radial
wave function φ(R) is the stationary solution of a dimen-
sionless 2D Gross-Pitaevskii equation (GPE),

H̃φ = −1

2

(
d2φ

dR2
+

1

R

dφ

dR

)
− |φ|2φ = µ̃φ , (1)

where the scaled chemical potential µ̃ = −0.205 is ob-
tained while solving φ(R) [13].

In Fig. 4, we plot the measured scale-invariant mean
density profiles 〈ñ〉 as a function of the rescaled ra-

dial position R =
√
|g|r̃. We find that four initially

very different mean profiles (inset) measured at |g| ≈
(0.0075, 0.0170, 0.0215, 0.034), respectively, can collapse
onto a universal curve in the rescaled coordinate, which
agrees very well with the GPE solution |φ(R)|2; only a
small deviation ∆ñ . 0.015 becomes visible at R & 3,
where |φ(R)|2 . 0.02. This could result from a very low
fraction of collision remnants in the horizontal plane or
from barely overlapping tails of adjacent solitons, which
has little influence on the universal scaling tests near the
core region R . 3. Integrating the scaled density to
R = 4, we have estimated

∫
〈ñ〉dR ≈ 6.0 ± 0.8 ∼ Nts|g|,

agreeing reasonably with theory [Fig. 4(b)].
The observed universal scaling behavior is a remark-

able manifestation of SI in 2D Bose gases effectively de-
scribed by a mean field interaction Eq. (1). This uni-
versal behavior is also evidenced in Fig. 4 (b), where we
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FIG. 4. Universal soliton density profile. (a) Filled sym-
bols show different scale-invariant mean profiles 〈ñ〉 (inset),
measured at interaction strengths g ≈ −0.0075 (triangle),
−0.0170 (circle), and −0.0215 (square), respectively. Open
circles display a scaled density profile reported in Ref. [17],
for g ≈ −0.034 and with a fixed np ≈ 5/µm2. These pro-
files collapse onto a single curve in the rescaled radial co-
ordinate R =

√
|g|r̃, and the magenta band marks their

mean with standard error. Collapsed solid curves are the uni-
versal Townes profile (black) and the solutions of full GPE
with the MDDI term Eq. (3), calculated using gc = −0.009,
np = 1/µm2 (red) and 10/µm2 (blue), respectively, and
rescaled using g = gc + 2gdd. For comparison, dashed curves
show the same solutions rescaled using g = gc. (b) Universal
atom number N |g| =

∫
ñdR using soliton profiles as in Fig. 3

and integrated up to R = 4. Solid line and gray band indicate
the mean and standard deviation.

plot the scaled atom number N |g| of individual solitons
as shown in Fig. 3. Almost all of them collapse to the
universal number Nts|g| to within the experiment uncer-
tainty. The scaling behavior is tested with solitons of a
nearly 60-fold difference in their peak interaction energies
~γ = ~2np|g|/m, where ~ is the reduced Planck constant,
m is the atomic mass, and γ ≈ 2π × (0.85− 49) Hz.

It is however worth noting that a non-negligible MDDI
potential is present in our alkali cesium samples [24–26].
Since a MDDI potential scales with the inter-atomic spac-
ing as 1/r3, it could impact SI in a 2D Bose gas. For the
effective 2D MDDI strength [14],

gdd =
m

~2
µ0µ

2

3
√

2πlz
, (2)

we find that gdd ≈ 0.00087 is stronger than −10% of
the smallest coupling constant g ≈ −0.0075 explored,
where µ0 is the vacuum permeability, µ ≈ 0.75µB ce-
sium magnetic dipole moment, and µB the Bohr magne-
ton. It is thus necessary to examine the effect of MDDI
in a GPE. The MDDI in our matter-wave solitons is in
a highly oblate configuration, with spin polarized along
the tightly confined z-axis. Integrating out wave function
along this axis (assumed Gaussian), the rescaled MDDI
Hamiltonian can be conveniently expressed as the follow-
ing inverse Fourier transform [14, 27, 28]:

H̃dd =
gdd
|gc|

∫
dk

(2π)2
eikR cos θkhdd

(√
np|gc|

2
klz

)
ñ(k) ,

(3)
where we define gc as the bare contact coupling con-
stant, ñ(k) is the Fourier transform of the rescaled den-
sity profile ñ(R) = |φ(R)|2, and hdd is the MDDI func-
tion that can potentially break SI [13]. However, in the

limit
√
np|g|lz � 1, hdd ≈ 2 is approximately constant

within a finite k-range until ñ(k) vanishes. Equation (3)
thus transforms back to an effective contact interaction
Hamiltonian:

H̃dd ≈ 2
gdd
|gc|
|φ(R)|2 . (4)

This argument generally applies to weakly interacting 2D
gases whose lateral size w � lz [13, 28]. As such, the full

Hamiltonian in a modified GPE, H̃ + H̃dd, can be effec-
tively recast into H̃ in Eq. (1) by rescaling the coordinate
R using g = gc + 2gdd.

We numerically confirm SI with the MDDI in our
quasi-2D samples that have a small but finite lz ≈
184 nm, giving 0.02 .

√
ng|g|lz . 0.15 [29]. As shown

in Fig. 4, sample numerical solutions at gc = −0.009 col-
lapse well to the universal Townes profile if we rescale
the radial coordinate R using g = gc + 2gdd ≈ −0.0073,
which includes the MDDI shift.

The good agreement between our measurement results
and the properly rescaled numerical solutions suggests
our coupling constant g, which is evaluated using a cali-
brated scattering length, is already shifted by the MDDI
[13, 26, 30]. This is likely the case, as our calibration pro-
cedure performed in a quasi-2D trap cannot discern the
effect of MDDI from that of a two-body contact interac-
tion [13]. We conclude that the scaling tests performed
in Figs. 3 and 4 confirm SI with the inclusion of a weak
MDDI contribution in our quasi-2D geometry.

In summary, we demonstrate a near-deterministic
method to form 2D matter-wave solitons and test the
scaling symmetry in attractive 2D Bose gases previously
inaccessible to other experiments. We show that SI man-
ifests robustly through an unstable many-body state,
formed remarkably from out-of-equilibrium quench dy-
namics [17]. In particular, our observation confirms that
the Townes profile not only manifests in a self-similar
nonlinear wave collapse, as partially observed in Ref. [16],
it is also a prevalent SI profile in solitary waves formed
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from a modulational instability. The observed universal
scaling behavior is under the influence of a non-negligible
MDDI potential, which nevertheless imposes no influence
on SI in a quasi-2D geometry. A recent study also reveals
the insensitivity in the size and shape of a 2D superfluid
to the MDDI [31]. Our recipe for instability-induced soli-
ton formation may be further explored in a SI-breaking
scenario, for example, through crossover to an MDDI-
dominating regime [14, 25], either by tuning to a much
smaller contact coupling gc [30] or with a dipolar quan-
tum gas [32–35]. Furthermore, our scaling analysis may
be extended to test the dynamics of stronger attractive

2D Bose gases, where quantum correlations may begin to
play an important role, such as those discussed in quan-
tum droplets [36–41].
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