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We experimentally study two-dimensional (2D) Coulomb crystals in the “radial-2D” phase of a
linear Paul trap. This phase is identified by a 2D ion lattice aligned entirely with the radial plane and
is created by imposing a large ratio of axial to radial trapping potentials. Using arrays of up to 19
171

Yb
+

ions, we demonstrate that the structural phase boundaries of such crystals are well-described
by the pseudopotential approximation, despite the time-dependent ion positions driven by intrinsic
micromotion. We further observe that micromotion-induced heating of the radial-2D crystal is
confined to the radial plane. Finally, we verify that the transverse motional modes, which are used in
most ion-trap quantum simulation schemes, are well-predictable numerically and remain decoupled
and cold in this geometry. Our results establish radial-2D ion crystals as a robust experimental
platform for realizing a variety of theoretical proposals in quantum simulation and computation.

Laser-cooled ions in radio-frequency (rf) and Penning
traps form Coulomb crystals, spatially ordered struc-
tures that arise due to a balance between trapping fields
and Coulomb repulsion. Decades of advancements in the
preparation and control of cold ion crystals have allowed
for the precise manipulation of their internal and external
degrees of freedom [1], giving rise to applications span-
ning plasma physics [2, 3], high-precision spectroscopy
[4, 5], cold molecules [6–8], and quantum computation [9–
11] and simulation [12–14]. In these experiments, achiev-
ing the desired level of control has typically required an
initial characterization of ion positions, structural phases,
normal mode frequencies, and sources of crystal heating.

Over the last decade, one-dimensional (1D) ion chains
in rf traps have seen remarkable success in engineering
high-fidelity quantum gates [15, 16] and simulating 1D
quantum spin systems [17]. If a comparable ability to
control and probe two-dimensional (2D) crystals in rf
traps can be achieved, then the native 2D interactions
between ions would provide an inherent advantage over
1D systems for the quantum simulation of complex 2D
materials [18–21]. In addition, 2D arrays can hold larger
numbers of qubits more efficiently than 1D strings, with
a higher error threshold for fault-tolerance [22, 23], and
may simplify preparations of 2D cluster states for one-
way quantum computing [24, 25]. Already, 2D arrays of
ions in Penning traps have led to successes in simulat-
ing and studying quantum spin models [26, 27], though
the fast crystal rotation in such traps poses a significant
challenge to individual ion addressing.

In rf traps, there are two primary ways to orient a 2D
crystal. The first of these, which is an extension of the
well-known “zig-zag” phase, spans a 2D plane defined by
one radial and one axial trap direction [28]. In this case,
rf-driven micromotion is present along one of the in-plane
directions as well as transverse to the plane. Ion crystals
in this phase, which we refer to as the “lateral-2D” geom-
etry, were first realized in rf traps over 20 years ago [29].
More recent work has measured the vibrational spectrum

of lateral-2D crystals [30], and further experiments have
demonstrated coherent operations in this regime [31].

In contrast, the “radial-2D” phase, defined as the con-
figuration for which the ion plane is coincident with the
trap’s radial plane, remains largely unexplored experi-
mentally. In this phase, the longitudinal in-plane modes
lie along the radial direction and experience micromotion,
while the transverse modes lie along the axial direction
and remain micromotion-free. This radial-2D phase has
been the primary interest for most theoretical studies of
2D ion crystals, which have made predictions of crystal
stability, lifetimes, heating rates, phase boundaries, and
gate fidelities [18–20, 22, 23, 32, 33]. To date, however,
experiments performed with radial-2D crystals have only
demonstrated Doppler cooling [34] and probed the radial-
2D phase boundary with 3-4 ions [30].

Notably, lateral-2D and radial-2D crystals are each
expected to exhibit distinct behavior due to the differ-
ent relative orientations of micromotion with respect to
the crystal plane. Thus, previous studies of the struc-
tural and dynamical properties of lateral-2D crystals are
not directly applicable to the radial-2D regime [18, 19].
Moreover, for radial-2D crystals, it is experimentally un-
known the degree to which micromotion may obscure
site-specific imaging resolution, or worse, lead to fast
absorption of energy from the rf drive [32, 35, 36] and
melting of the ion lattice [37].

In this Letter, we report the experimental character-
ization and coherent control of radial-2D crystals in a
linear Paul trap. We map the full range of structural
phases for Coulomb crystals as a function of ion num-
ber using arrays of up to 19 ions, and we investigate the
transverse vibrational mode spectrum in the radial-2D
phase. Next, we measure the time-dependent tempera-
ture of the crystal as it experiences micromotion-induced
heating, and we extract the center-of-mass heating rate
along the micromotion-free direction perpendicular to the
radial plane. Finally, we discuss the implications for fu-
ture quantum information processing experiments.
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FIG. 1. Crystals of 13 ions are shown for increasing values
of the trap aspect ratio α ≡ ωz/ωr. The structure trans-
forms from a 1D chain (a) to zig-zag (b) and 3D spheroidal
phases (c), before ending in a 2D triangular lattice in the ra-
dial plane (d). Crosses show the ion positions predicted by
the pseudopotential approximation. Panel (e) shows the same
calculation as the crosses in (d), rotated to better display the
lattice structure. Simulated ion sizes in (e) correspond to the
diffraction-limited spot size of our imaging optics and include
effects from rf-driven micromotion.

Experiments are performed with 171Yb+ ions con-
fined in a four-rod linear Paul trap with two “nee-
dle” endcaps along the axial (ẑ) direction (see supple-
mentary material for detailed trap information [28]).
A slight asymmetry is introduced between the radial
x̂- and ŷ- directions to prevent a zero-frequency rota-
tional mode; for specificity, we define the radial sec-
ular trap frequency as ωr ≡ Max[ωx, ωy] throughout.
Doppler cooling of the ions is accomplished by irradi-
ating the 369.5 nm 2S1/2|F = 0〉 →2P1/2|F = 1〉 and
2S1/2|F = 1〉 →2P1/2|F = 0〉 transitions; ions are imaged
by capturing the fluorescence from these transitions on
an EMCCD camera.

Structural Phase Transitions—When the aspect ratio
α ≡ ωz/ωr of the trap’s axial and radial secular frequen-
cies is small, ions form a 1D chain along the trap’s central
axis (Fig 1(a)). As α is increased (by increasing the axial
frequency), the ions pass through a zig-zag phase (Fig.
1(b)) and a number of three-dimensional (3D) spheroidal
configurations (Fig. 1(c)), before forming a radial-2D
crystal. This last configuration occurs in Fig. 1(d), where
the single plane of ions is viewed on-edge. Fig. 1(e) sim-
ulates the same crystal rotated perpendicularly to the
plane. For these higher-α phases, ions that lie away from
the trap’s central axis are subject to rf-driven micromo-
tion, the amplitude of which increases linearly with an
ion’s radial coordinate [28]. Though the equilibrium ion
positions are no longer stationary due to micromotion,
the observed time-averaged positions closely correspond
to predictions obtained from pseudopotential theory cal-
culations (red crosses in Fig. 1).

Varying the axial confinement over such a large range
enables the precise experimental determination of struc-
tural phase transition boundaries at both small and large
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FIG. 2. (a) Phase diagram of ion Coulomb crystals in a lin-
ear Paul trap. Data show the measured α that separate the
1D/zig-zag and 3D/radial-2D phases as a function of ion num-
ber. Three theory predictions (with no adjustable parame-
ters) are plotted for comparison. Blue dashed, pseudopoten-
tial [38]; Red solid, Floquet-Lyapunov [39]; Orange dotted,
micromotion-destabilized [22]. (b) Axial mode spectrum for
7 ions in a radial-2D crystal at α = 2. Vertical lines show pre-
dicted mode frequencies. Blue dashed, pseudopotential; Red
solid, Floquet-Lyapunov.

α, as shown in Figure 2(a). Ions starting in a 1D chain
exhibit a sudden transition to a zig-zag configuration at a
critical value of α dependent on particle number N [40].
Since micromotion plays no role in this transition, numer-
ical estimates of the phase boundary are straightforward
[38, 41, 42] and have been previously verified with up to
10 ions [43]. Our measurements confirm this behavior
for up to 19 ions and are compared to the theoretical
prediction (lowest blue dashed line) in Fig 2(a).

For the 3D to radial-2D transition, the presence of mi-
cromotion complicates theoretical estimates of the phase
boundary. One calculation, shown as the upper blue
dashed line in Fig. 2(a), predicts the phase transition
using only the time-averaged pseudopotential [38]. A
more complete description, which accounts for the fully-
coupled and time-dependent dynamics of the ion posi-
tions, is shown as the solid red line in Fig. 2(a). Here,
a Floquet-Lyapunov (FL) transformation is invoked to
convert the periodic, time-dependent problem to a time-
independent formulation and find the decoupled modes of
oscillation [39, 44]. A third analysis of this phase bound-
ary, shown as the orange dotted line in Fig. 2(a), sug-
gests the existence of a micromotion-destabilized region
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due to a downward shift in transverse mode frequencies
[22]. Our measurements of the 3D to radial-2D phase
boundary in Fig. 2(a) confirm the validity of the FL
approach in this regime, as opposed to the micromotion-
destabilized theory. In addition, our data demonstrate
that the pseudopotential approach provides a close ap-
proximation of the transition for up to 19 ions, even in
the presence of increasing radial micromotion with larger
crystal sizes.

As a further investigation of micromotion effects, we
measure the vibrational spectrum of a 7-ion crystal deep
in the radial-2D regime. Global, far-detuned Raman
transitions at 355 nm allow for spin-motion coupling
and coherent excitation of the crystal modes [45]. The
two Raman beams have a frequency difference near the
171Yb+ hyperfine ground state splitting ωhf, with the
precise frequencies, amplitudes, and relative phases con-
trolled by acousto-optic modulators [46]. In our exper-
iment, the wavevector difference of our Raman beams
is aligned perpendicularly to the crystal plane, resulting
in strong coupling to the axial (transverse) modes and
suppression of coupling to the radial (in-plane) modes.

In Fig. 2(b), we compare the measured axial mode
frequency spectrum to frequencies calculated using the
pseudopoential (blue dashed) and FL (red solid) ap-
proaches. These methods largely agree with the mea-
sured data and with each other to within 2 kHz, though
the pseudopotential approximation mispredicts the low-
est frequency mode by over 10 kHz. Nevertheless, the
pseudopotential approximation may still provide reason-
able accuracy for many experiments. For instance, in
quantum simulations of spin-lattice Hamiltonians [17],
the pseudopotential approach correctly predicts the 2D-
Ising interaction range to within 0.5% for up to 19 ions.

Rf heating effects—The presence of micromotion may
have strong effects on crystal lifetimes and temperatures.
When multiple ions are confined in an rf trap, ion-ion
collisions can transfer micromotion energy into secular
kinetic energy and result in rapid rf heating [35, 36]. As
the collision rate increases, ion motion becomes less cor-
related, and a sudden jump in temperature occurs at
an inflection point which corresponds to a ‘melting’ of
the crystal [37]. This rf heating mechanism is expected
to dominate over other sources of noise, such as electric
field fluctuations [47] and collisions with background gas
molecules [32]. Though molecular dynamics simulations
indicate that large numbers of ions could be maintained
for long times without continuous cooling [32], this pre-
sumes the existence of ideal traps; no prior studies have
established the lifetime and heating rates of radial-2D
crystals in experimentally-realizable systems.

To begin investigating the effects of micromotion-
induced heating, we measure the trapping lifetimes of
radial-2D crystals in the absence of active cooling. Af-
ter the ions are Doppler cooled, the cooling beams are
switched off and the ions are allowed to heat for a spec-
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FIG. 3. Voigt fluorescence lineshapes of a 7 ion crystal ex-
posed to rf heating are shown for heating times of (a) 0 ms,
(b) 80 ms, and (c) 160 ms. The lineshape widens at later
times due to increasing contributions from Doppler broaden-
ing. The 0 ms profile (3 mK temperature) is indicated by a
dashed blue line in panels (b) and (c) for reference. (d) A

radial heating rate of Ṫr = 1.04 ± .08 K/s is extracted from
Voigt profile fits to ion fluorescence data.

ified amount of time. If the crystal melts during this
period, one or more ions may escape the trap confining
potential or remain uncooled when the Doppler beams
are re-applied. We define the trapping lifetime as the
time for which all ions remain in the crystal with 1/e
probability, and find that it is in excess of 5 seconds for
lattices of up to 19 ions. This lifetime is exceptionally
long compared to the typical ∼millisecond timescales of
quantum computation or simulation experiments [10, 13].

To further study rf heating effects, we determine the
temperature of the radial-2D crystal by analyzing the
ions’ fluorescence lineshape. The ion resonance, which
is described by a Voigt distribution, is a convolution
of Lorentzian and Gaussian profiles. The Lorentzian
contribution comes from the power-broadened natural
linewidth ∆νL = Γ

√
1 + s = 2π × 22 MHz, where

Γ = 2π×19.6 MHz is the natural linewidth of the 171Yb+

369.5 nm 2S1/2 →
2P1/2 transition and s = 0.3 is the laser

saturation parameter. The Gaussian contribution re-
sults from Doppler broadening, with a full-width at half-

maximum of ∆νG = 2
√

(2 ln 2)kB
mλ

2

√
Tr cos2 θ + Tz sin2 θ.

This expression arises since our fluorescence beam inter-
sects the crystal plane at an angle (θ = 45◦) and is there-
fore sensitive to both the radial and axial temperatures
Tr and Tz. Later we will show that keeping independent
radial and axial temperatures is well-justified, and that
the axial temperature adds negligible contribution to the
overall linewidth.
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FIG. 4. (a) A comparison of red (solid) and blue (dashed)
sideband probability amplitudes are shown for a 7 ion crys-
tal immediately following sideband cooling. The heating rate
of the axial (transverse) COM mode for a single ion (b) is
comparable to that of a 7 ion crystal (c). In both cases, the
absolute heating rate is low compared to traps of similar size.

To extract the radial crystal temperature, we fit the
measured Voigt fluorescence profile to a Lorentzian of
constant width ∆νL and a Gaussian of variable width
∆νG. When the crystal is Doppler cooled to 3 mK
(as confirmed with sideband Raman spectroscopy), the
Gaussian contribution is small and the line profile is
essentially Lorentzian (Fig. 3(a)). However, if the
cooling beams are extinguished and the crystal ac-
quires radial energy through rf heating, the fluores-
cence profile spreads due to an increase in thermal mo-
tion (Fig. 3(b,c)). By performing many temperature
measurements at increasing heating times, as shown in
Fig. 3(d), we determined the radial heating rate to be
Ṫr = 1.04± .08 K/s. Previous work has predicted non-
linear heating near the melting point of Coulomb crys-
tals; the linear nature of our data implies that short time
scales, large ion masses, and low initial temperatures keep
crystals far from this limit [36, 37].

To look for evidence of heat transfer between the ra-
dial and axial directions, we measure the heating rate
of the axial center-of-mass (COM) mode using resolved
sideband spectroscopy [48]. Following Doppler cooling,
our 355 nm Raman beams are used to sideband cool the
axial COM mode to n̄ . 2.5 as well as to induce stimu-
lated Raman transitions at the axial COM red and blue
sideband frequencies, ωhf±ωz. The number of quanta in
the axial COM mode is determined by taking the ratio r
of red to blue sideband transition probability amplitudes
(Fig. 4(a)) for several different sideband drive times and
finding the mean occupation number n̄ = r

1−r . Finally,

the axial COM heating rate ˙̄n is determined by leaving
the crystal uncooled for increasing time periods and re-
peating the sideband measurements.

We compare the axial COM heating rate of a single ion
to that of a radial-2D crystal with 7 ions, under the same
trapping conditions (ωz ≈ 2π × 900 kHz and α = 2). As
shown in Fig. 4(b), we find a single-ion ambient heat-
ing rate of ˙̄n = 100 ± 20 motional quanta/s. This mea-
surement, which corresponds to temperature heating rate
Ṫz = 0.004± 0.001 K/s and a spectral density of electric
field noise SE = 2.65× 10−12 V2m−2Hz−1, is compara-
ble to heating rates observed in other room-temperature
rf traps of similar size [47]. We then repeat these mea-
surements for the axial COM mode of a 7-ion crystal,
finding a heating rate of ˙̄n = 125 ± 75 quanta/sec (Fig.
4(c)). In temperature units, this rate is over 200 times
smaller than the measured radial heating (Fig. 3) and
justifies our earlier assumption of non-equilibration be-
tween axial and radial directions.

Our measurements with one and seven ions further sug-
gest that electric field noise is not the dominant heating
mechanism in our trap. This is because electric field fluc-
tuations, which are largely correlated across the ions, are
expected to preferentially heat the COM mode and scale
linearly with ion number [47]. Our results instead indi-
cate largely uncorrelated noise, which has likewise been
observed in Penning traps using the analog of a radial-2D
crystal [49]. In the limit of perfectly uncorrelated noise,
we would expect other axial modes (indexed by k) to
exhibit heating rates ˙̄n(k) = (ωCOM/ωk) ˙̄nCOM [47], giv-
ing at worst an estimated ∼ 50% larger heating rate for
the lowest-frequency (zig-zag) axial mode. Whether the
noise in our system is correlated or not, our observations
of objectively low axial temperatures in the presence of
rapid radial heating demonstrate that the axial modes of
a radial-2D crystal remain cold, isolated, and well-suited
for quantum simulation experiments.

Discussion and Outlook— Our experiments estab-
lish that micromotion effects on radial-2D crystals
are largely constrained to the radial plane: phase
boundaries and axial vibrational spectra are well-
predicted by micromotion-free pseudopotential theory,
and only the in-plane radial degrees of freedom expe-
rience micromotion-induced heating. In contrast, the ax-
ial (transverse) degrees of freedom remain decoupled and
cold. Furthermore, we have enacted ∼5-µm ion-ion spac-
ings in this geometry, which will enable fast ion-ion cou-
pling rates while allowing for future individual addressing
with low cross-talk.

Our demonstration of stable, isolated, and low-noise
axial modes establishes radial-2D crystals in linear Paul
traps as a realistic platform for implementing several
proposals in quantum simulation [18, 19]. This system
is especially well-suited for studies of highly-frustrated
quantum spin models [19–21, 50], since long-range anti-
ferromagnetic interactions are routinely implemented be-
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tween co-trapped ions [17], and since ions in the radial-2D
phase self-assemble into a triangular lattice. Using only
global laser beams, we will be able to characterize the
ground state and dynamical properties of frustrated 2D
spin-models by measuring their excitations [21] and cor-
relation functions (which can distinguish, for instance,
between Néel states or Valence Bond Solid states [51]),
and by tuning the relative contributions of inherent geo-
metric and long-range frustration.

Realization of such proposals with radial-2D crystals
will demand several future developments. First, the
imaging optics should be moved perpendicularly to the
crystal plane to facilitate site-resolved detection of the
ion lattice. Next, methods to cool radial-2D crystals
near the motional ground-state should be applied, as they
have been for lateral-2D crystals [52]. Evidence of entan-
glement generation via Mølmer-Sørensen interactions [53]
(or equivalent) should then be demonstrated before im-
plementing full spin-lattice simulations. Finally, the pos-
sibility of maintaining 100+ ions in the radial-2D crystal
phase for long times [32], and the limits of crystal stabil-
ity in the presence of rf heating, should be experimentally
explored as the system is scaled to larger sizes.

The possibility to perform individual ion addressing
in rf traps, which is already well-established for 1D ion
chains [10, 11, 46], will further expand the capabilities
of the radial-2D platform. Shelving of specific ions will
allow for the quantum simulation of more complex lat-
tice geometries, such as Kagome, which are believed to
support spin-liquid phases [19–21, 54, 55]. Furthermore,
radial crystals with individual addressing could provide
a naturally scalable solution for fault-tolerant quantum
computing [22, 23] or simplify preparations for one-way
quantum computing schemes [24, 25].

This work was supported by the U.S. Department of
Energy, Office of Science, Basic Energy Sciences, under
Award #DE-SC002034. The IU Quantum Science and
Engineering Center is supported by the Office of the
IU Bloomington Vice Provost for Research through its
Emerging Areas of Research program.
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