
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Many-Electron System on Helium and Color Center
Spectroscopy

A. D. Chepelianskii, D. Konstantinov, and M. I. Dykman
Phys. Rev. Lett. 127, 016801 — Published 28 June 2021

DOI: 10.1103/PhysRevLett.127.016801

https://dx.doi.org/10.1103/PhysRevLett.127.016801


Many-electron system on helium and color center spectroscopy

A. D. Chepelianskii,1 D. Konstantinov,2 and M. I. Dykman3
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Electrons on the helium surface display sharp resonant absorption lines related to the transitions
between the subbands of quantized motion transverse to the surface. A magnetic field parallel to
the surface strongly affects the absorption spectrum. We show that the effect results from admixing
the intersubband transitions to the in-plane quantum dynamics of the strongly correlated electron
liquid or a Wigner crystal. This is similar to the admixing of electron transitions in color centers to
phonons. The spectrum permits a direct characterization of the many-electron dynamics and also
enables testing the theory of color centers in a system with controllable coupling.

Electrons above the surface of liquid helium are local-
ized in a one-dimensional potential well, which is formed
by the high repulsive barrier at the surface and the im-
age potential. The energy levels in the well are quan-
tized. The electrons occupy the lowest level forming a
two-dimensional system [1, 2]. The spectroscopic obser-
vation of transitions between the quantized energy levels
[3] was a direct proof of the picture of the electron con-
finement and the overall nature of the potential. Since
then much work has been done on the exact positions and
the widths of the spectral lines and their dependence on
the temperature and the electron density [4–12].

The electron system on helium is free from static dis-
order. It is also weakly coupled to the vibrational exci-
tations in helium, ripplons and phonons. The observed
spectral lines are narrow, with width as small as ∼ 2 MHz
for T = 0.3 K [8]. In the nomenclature of the solid-state
spectroscopy they correspond to zero-phonon lines. Such
lines in the spectra of point defects result from transitions
between the defect energy levels with no energy transfer
to/from phonons [13]. The physics of point defects and
the defect spectroscopy have been in the focus of atten-
tion recently in the context of quantum computing and
quantum sensing [14]. On their side, electrons on helium
themselves have been also considered as a viable candi-
date system for a scalable quantum computer [15–19].

One of the major attractive features of electrons on
helium is the possibility to study many-electron ef-
fects. The electron-electron interaction is strong, the
ratio of its energy to the electron kinetic energy is
Γ = e2(πns)

1/2/kBT > 30 for the electron density
ns ≥ 107 cm−2 and T ≤ 0.3 K. The electrons form a
Wigner crystal [20, 21] or a classical or quantum non-
degenerate liquid with unusual transport properties, cf.
[22–29] and references therein. Spectroscopy would be
expected to provide a most detailed insight into the cor-
related many-electron dynamics. However, the only spec-
tral effect of the electron-electron interaction studied so
far is a small density-dependent line shift [5, 10].

In this paper we show that, by applying a magnetic
field along the helium surface, one can use spectroscopy
to study quantum dynamics of a nondegenerate electron

liquid and a Wigner solid. Importantly, in the cases
where this dynamics has been already understood, the
system can serve as a quantum simulator of color center
spectroscopy, with the unique opportunity of controlling
the strength of the coupling of the electron transition and
many-body excitations in the system. The importance of
such simulations follows from the broad applications of
color centers, including the color centers in diamond such
as NV centers, cf. [14, 30, 31].

FIG. 1. Left: The many-electron system on helium in a mag-
netic field with components parallel (B‖ ≡ Bx) and perpen-
dicular (B⊥ ≡ Bz) to the helium surface. Right: The energy
spectrum of an electron in the two lowest bands of motion nor-
mal to the surface. The energy difference between the bands
ε21 is the distance between the levels of the quantized motion
along the z-axis. The single-electron kinetic energy of motion
along the surface is quadratic in the in-plane momentum p
for B⊥ = 0. The field B⊥ transforms the spectrum into the
Landau levels, which are broadened by the electron-electron
interaction. The field B‖ shifts the bands of the in-plane mo-
tion by ∆pB , see Eq. (1).

The change of the interband absorption spectrum by
an in-plane magnetic field has been studied for degener-
ate quasi-two-dimensional electron systems in semicon-
ductors, see [32] and references therein. The results were
interpreted in the mean-field approximation. The field-
induced high-temperature spectral broadening was also
reported for electrons on helium [33, 34]. Here we show
that, for electrons on helium in the quantum regime, the
spectrum is qualitatively different from what the mean-
field theory predicts. It has to be analyzed using an ap-
proach that explicitly takes into account the interplay of
the strong correlations and fluctuations in the quantum
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electron system.
The effect of the parallel magnetic field on the elec-

tron spectrum and the similarity with the physics of color
centers can be understood from Fig. 1. We choose the z
axis as the direction of quantized motion normal to the
surface. In different quantized states of the out-of-plane
motion |µ〉 the electron is at a different average distance
from the surface. If a magnetic field B‖ is applied par-
allel to the surface, an inter-state transition leads to the
electron shift transverse to B‖. Therefore the electron
in-plane momentum is changed by the Lorentz force in
the ẑ × B‖ direction. For the transition |1〉 → |2〉 from
the ground to the first excited state the change ∆pB is

∆pB = mω‖∆z, ∆z = z̄22 − z̄11,
ω‖ = eB‖/mc, z̄µµ = 〈µ| z |µ〉 (µ = 1, 2). (1)

Thus the minima of the energy bands ε1(p) and ε2(p)
of the in-plane motion (p is the in-plane momentum) are
shifted with respect to each other. We assume mω2

‖∆
2
z �

ε21 ≡ min[ε2(p)− ε1(p)].
The right panel of Fig. 1 has the familiar form of the

sketch of the energy of a point defect coupled to a vi-
brational mode in a crystal [13]. In the case of a defect,
the horizontal axis is the coordinate of the vibrational
mode, and the parabolae show the potential energy of
the mode in the two electron states with the energy dif-
ference ε21. The zero-phonon spectral line corresponds
to a transition at frequency ε21/~ between the minima of
the parabolae. The vertical transition from the minimum
of the lower parabola (the Franck-Condon transition) oc-
curs at a higher energy. Usually the electron is coupled to
many modes (phonons), which significantly complicates
the analysis, as has been known since the work of Pekar
[35] and Huang and Rhys [36].

In distinction from a defect, the parabolae in Fig. 1
show the single-electron energy as a function of the in-
plane momentum. In a strongly correlated electron sys-
tem the momentum can be transferred to other electrons.
Such recoil reminds the recoil from the absorption of
a gamma-quantum by an impurity in a crystal, which
underlies the Mössbauer effect. By analogy with the
Mössbauer effect and the spectra of color centers, the ab-
sorption spectrum of electrons on helium should strongly
depend on the in-plane many-electron dynamics.

To analyze the spectrum in the presence of strong elec-
tron correlations, one should start with the full Hamilto-
nian of the system. It is a sum of the terms H‖, H⊥, and
Hi that describe, respectively, the in-plane motion, the
motion normal to the helium surface in the image poten-
tial [1, 2], and the coupling of these two motions by the
in-plane field B‖ ≡ Bx. In the presence of a magnetic
field B⊥ ≡ Bz normal to the surface.

H = H‖ +H⊥ +Hi, H‖ =
∑
n

π2
n

2m
+

1

2

∑
n,m

′ e2

|rn − rm|
,

H⊥ =
∑
n

[
p2nz
2m

+ U(zn)

]
, Hi =

∑
n

ω‖πny(zn − z̄11).

Here n enumerates electrons, rn ≡ (xn, yn) and πn =
−i~∇n + (e/c)A⊥(rn) are the in-plane electron coor-
dinate and kinematic momentum [A⊥(r) is the vector-
potential of the field B⊥ ≡ Bz], whereas U(z) is the
confining potential. The leading-order part of Hi is di-
agonal with respect to the states |µ〉n of the out-of-plane
motion, Hi = ω‖∆z

∑
n πny |2〉n n〈2|, see Supplemental

Material (SM) [37].
The frequency ε21/~ of the interstate transition largely

exceeds all characteristic frequencies of the in-plane elec-
tron motion. One therefore can think of the adiabatic ap-
proximation in which the transition |1〉 → |2〉 occurs “in-
stantaneously” for a given in-plane many-electron state.
The transition frequency depends on this state. It is this
dependence that determines the shape of the spectrum.

Formally, the absorption of microwaves polarized in
the z-direction is determined by the real part of the con-
ductivity σzz(ω). For a nondegenerate electron system
it is given by the sum of the contributions from individ-
ual electrons, i.e., by the conductivity of an nth electron
multiplied by the in-plane electron density ns. From the
Kubo formula

Reσzz(ω) = CσRe

∫ ∞
0

dteiωt〈[zn(t), zn(0)]〉. (2)

Here Cσ = e2nsω/~ ≈ e2nsε21/~2 in the considered
range of resonant absorption.

The evaluation of the conductivity depends on whether
the electron system is a liquid or a crystal. For a Wigner
crystal the operators πn are linear combinations of the
creation and annihilation operators of the Wigner crys-
tal phonons, making the form of the coupling Hi and
the problem as a whole largely the same as that of
the spectra of color centers [37]. However, in our ex-
periment the electron system is a strongly correlated
liquid in a strong transverse magnetic field B⊥. In
such a field the in-plane electron motion is a superpo-
sition of a fast quantized cyclotron motion at frequencies
∼ ωc = eB⊥/mc and a slow semiclassical drift of the
guiding centers of the cyclotron orbits. The drift comes
from the fluctuational electric field caused by the elec-
tron density fluctuations. The field on an nth electron is
En = −e

∑′
m(rn − rm)/|rn − rm|3. It varies on the time

scale ωc/ω
2
p � ω−1c , where ωp = (2πe2n

3/2
s /m)1/2 [22].

The time scale separation allows describing the peak
of the absorption spectrum of the electron liquid in
an explicit form [37]. It is convenient to single
out in the integrand in Eq. (2) the factor that os-
cillates at the resonant frequency, 〈[zn(t), zn(0)]〉 =∣∣ 〈1| z |2〉 ∣∣2 exp(−iε21t/~)Q(t). The function Q(t) de-
scribes the effect of the in-plane many-electron dynamics,

Q̄(t) = eiδ‖t exp[−(γ2/2)w(t)],

δ‖ = mω2
‖∆

2
z/2~, γ2 = δ‖ω

2
pkBT/2π~ω2

c ,

w(t) = (n3/2s kBT )−1
∫∫ t

0

dt1 dt2 〈En(t1)En(t2)〉. (3)
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We assumed Gaussian distribution of the fluctuational
field En. In a broad parameter range relevant for the ex-

periments on electrons on helium 〈E2
n〉 ≈ F (Γ)n

3/2
s kBT ,

where F (Γ) ' 9.
If the coupling to the in-plane fluctuations is strong,

γ � ω2
p/ωc, from Eq. (3) the main part of the absorp-

tion spectrum (2) is a Gaussian peak, reminiscent of the
spectrum of color center. The typical width of the peak
in the frequency units is γF (Γ)1/2.

The absorption spectrum also has an analog of the
zero-phonon line. It is described by the long-time behav-
ior of w(t) and dominates the spectrum for small B‖. In
the electron liquid the line is Lorentzian with a half-width
which, unexpectedly, is determined by the self-diffusion
and is equal to mδ‖D/2, where D is the self-diffusion
coefficient [37]. One can switch from a Lorentzian to a
Gaussian spectrum by increasing the field B‖.
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FIG. 2. The spectra of the relative microwave-induced change
of the low-frequency admittance Y for different B‖ ≡ Bx.
The data refers to the microwave frequency f = 150 GHz,
T = 0.2 K, B⊥ ≡ Bz = 0.5 T, and ns = 21.5 × 106 cm−2.
The AC bias is 30mV. The dashed lines show Gaussian fit to
the data with the variance δE2

z given by Eq. (4).

In the experiment, the absorption spectrum is mea-
sured by varying the electric field Ez applied perpendic-
ular to the helium surface, using that the level spacing
ε21 linearly depends on Ez within the linewidth. In the
units of Ez, the typical width of the Gaussian peak is

δEz =
B‖

B⊥
√

2

[
kBTn

3/2
s F (Γ)

]1/2
. (4)

All parameters in Eq. (4) can be controlled in the ex-
periment. This enables testing the theoretical prediction
with high accuracy.

We measured the change of the low-frequency helium
cell admittance Y due to absorption of microwave radia-
tion, as explained in SM. Such photo-assisted transport
spectroscopy provides a sensitive way to measuring res-
onant microwave absorption [10]. The method has been
used to study the rich out-of-equilibrium physics and
a variety of nontrivial nonlinear effects associated with
moderately strong resonant microwave excitation of the

electron system [10, 12, 27, 28]. Here we focus on the lin-
ear response. The microwave power was attenuated down
to µW levels. The experimental technique used here is
very close to [12], however improvements were made to
work at very low microwave power and to ensure that the
helium filling level in the sample cell was close to 50% to
provide a good compensation between the electric field
created by the top and bottom image charges. These
steps are described in detail in SM.

The spectra of the resonant |1〉 → |2〉 photoexcita-
tion are shown in Fig. 2. For B‖ & 0.4 Tesla, where
the strong-coupling condition holds, the observed shape
of the spectra is very well described by a Gaussian fit
(dashed lines) with the variance δEz given by Eq. (4),
with no fitting parameters. The overall area of the spec-
tral peaks is determined by the photo-assisted transport
response of electrons on helium, which depends on B‖;
the discussion of this dependence is beyond the scope of
this paper.
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FIG. 3. The dependence of the typical width of the spectral
peaks δEz on B‖ ≡ Bx for different temperatures. The other
parameters are the same as in Fig. 2. The dashed lines are
the linear fit. In the strong-coupling range they are described
by Eq. (4). The inset shows the slope of δEz/B‖ as a function

of T 1/2. The dashed black line is given by Eq. (4) with no
adjustable parameters.

In Fig. 3 we show the linewidth δEz as a function of B‖
for several refrigerator temperatures. The observed lin-
ear dependence quantitatively agrees with Eq. (4) in the
strong-coupling regime, which corresponds to B‖T

1/2 &
0.15 Tesla×K1/2, for the used ns and B⊥. The linewidth
at B‖ = 0 is attributed to residual inhomogeneous broad-
ening in our system. The linear fits to the data at
different temperatures all intersect near B‖ = 0, sup-
porting this interpretation. The inset shows the ratio
δEz/B‖ as a function of the square root of the tem-
perature. The black line depicts this ratio as given by
Eq. (4) with no adjustable parameters [Eq. (4) holds for
T 1/2 < (~ωc/kB)1/2 ≈ 0.6 K1/2].

To further check Eq. (4) we investigated the density
dependence of the linewidth for different magnetic fields
B‖ ≡ Bx and B⊥ ≡ Bz. In order to reduce the averaging
time and increase the sensitivity for small ns we used a
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FIG. 4. The dependence of the squared linewidth scaled by
the ratio of the magnetic fields B‖ ≡ Bx and B⊥ ≡ Bz on
the electron density ns. The excitation frequency is 174 GHz
except for the data at B⊥ ≡ Bz = 0.3 Tesla, which refers
to f = 144 GHz. The black line shows the prediction of
Eq. (4) for the effective electron temperature Te = 0.6 K.
Inset: the linewidth as a function of the microwave power
for Bz = 0.5 Tesla, Bx = 0.75 Tesla, f = 150 GHz, and
ns = 21.5 × 106 cm−2.

stronger microwave power, in the 100 µW range. This
resulted in an additional spectral broadening, which we
attribute to an effective electron temperature Te = 0.6 K
(the refrigerator temperature is 0.3 K; the dependence
of the linewidth on the microwave power is shown in the
inset in Fig. 4). With this assumption the data are in full
agreement with Eq. (4). As shown in Fig. 4, (δEz)

2 ∝
n
3/2
s . By rescaling the linewidth, we see that the results

for different B‖ and B⊥ collapse onto the same curve.

The many-electron theory of the interband absorption
spectra developed in this paper and the experimental ob-
servations are in full quantitative agreement, with no ad-
justable parameters. In contrast to the previous work
on the electron absorption spectra, the theory explicitly
takes into account strong electron correlations. The ex-

perimental data were obtained by extending the measure-
ments to low microwave power, which made it possible
to investigate the spectra in the linear-response regime.

The experimental data provide the first direct mea-
surement of the fluctuational electric field which an elec-
tron is experiencing in a nondegenerate electron liquid
and which, as we show, determines the shape of the spec-
trum. The results refer to a broad range of the electron
densities, temperature, and the coupling strength of the
in-plane and out-of-plane motions, where the in-plane
motion is quantized by the magnetic field. Such quan-
tization is advantageous for revealing nontrivial aspects
of the many-electron dynamics in a strongly correlated
two-dimensional system.

Our results demonstrate that, by applying an in-plane
magnetic field, one can directly study intimate features of
the quantum physics of an electron liquid and a Wigner
crystal. The regimes other than the one explored here ex-
perimentally can be also investigated with the developed
technique. Those include the regime of Wigner crystal-
lization, in which case the closed-form expression for the
spectrum is obtained. Self-diffusion in the electron liq-
uid, which is hard to characterize otherwise, can be also
explored. Importantly, the results demonstrate that elec-
trons on helium can be used as a test bed for the quan-
tum theory of the effect of the electron-phonon coupling
on the optical spectra of color centers. The system pro-
vides a unique setting where both the effective coupling
strength and the spectrum of elementary excitations cou-
pled to the electron transition can be varied in situ by
varying the in-plane and out-of-plane magnetic fields.
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