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The axion insulator is a higher-order topological insulator protected by inversion symmetry. We
show that under quenched disorder respecting inversion symmetry on average, the topology of the
axion insulator stays robust, and an intermediate metallic phase in which states are delocalized is
unavoidable at the transition from an axion insulator to a trivial insulator. We derive this conclusion
from general arguments, from classical percolation theory, and from the numerical study of a 3D
quantum network model simulating a disordered axion insulator through a layer construction. We
find the localization length critical exponent near the delocalization transition to be ν = 1.42±0.12.
We further show that this delocalization transition is stable even to weak breaking of the average
inversion symmetry, up to a critical strength. We also quantitatively map our quantum network
model to an effective Hamiltonian and we find its low energy k·p expansion.

Introduction Localization of electronic states in dis-
ordered systems has been extensively studied in the past
decades [1, 2]. In particular, studies on the quantum
Hall states reveal a profound relation between delocal-
ization and the topology of the electronic state [3–6].
Hence an interesting question is how the localization in-
terplays with the full range of band topologies discovered
in the past two decades. For topological insulators [7–13]
protected by nonspatial symmetries [14, 15], it has been
shown that the gapless boundary states are stable against
symmetry-respecting disorder [13, 16–20], and the phase
transition point between phases of different bulk topo-
logical numbers has protected extended bulk states at
the chemical potential [6, 21, 22]. Topological states pro-
tected by translation [23, 24] or mirror [21, 25] symme-
tries are shown to have stable gapless surface states if
the crystalline symmetries are respected on average by
the disorder. However, such analyses do not explore the
effect of disorder on bulk states, and do not generalize
to the topological states protected by generic crystalline
symmetries [26–31], such as higher-order topological in-
sulators [32–39]. Very recently, some numerical studies
have shown the robustness of the higher-order topological
insulators [40–43], but an understanding of this robust-
ness and of the delocalization transitions of these insula-
tors is still lacking.

In this work, we focus on bulk delocalization transi-
tions of a disordered axion insulator [28, 44–46], which is
recently identified as a higher-order topological insulator
protected by inversion symmetry [32, 47–51]. We show
that a 3D delocalized metallic phase necessarily arises
during the transition from an axion insulator to a trivial
insulator as long as the inversion symmetry is respected
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(or broken weakly enough) on average. Such a delocal-
ization transition manifests the robustness of the axion
insulator topology against disorder.

Layer construction argument We consider a 3D
crystal with inversion symmetry that maps (x, y, z) →
(−x,−y,−z) and translation symmetry that maps
(x, y, z) → (x + tx, y + ty, z + tz), with tx,y,z ∈ Z
(Fig. 1c). A shifted inversion operation centered at
(tx/2, ty/2, tz/2) consists of the combination of inversion
and translation. There are eight shifted inversion centers
in each unit cell, corresponding to tx,y,z = {0, 1}, re-
spectively. Ref. [52] shows that the axion insulator state
can be constructed from weakly coupled Chern insulators
sublayers [53–56] occupying the inversion centers, where
for the A sublayers at z = 0,±1 · · · the Chern number
is C = 1 and for the B sublayers at z = ± 1

2 ,±
3
2 · · · it is

C = −1 (Fig. 1c). The net Chern number in each unit cell
is zero. The topology of the axion insulator relies on the
fact that one cannot trivialize the construction without
breaking inversion symmetry. For example, dimerizing
each sublayer A at z ∈ Z with the sublayer B at either
z+ 1

2 or z− 1
2 leads to a trivial insulator, but breaks the

inversion symmetry (Fig. 1d).

Our analysis starts from 2D. We consider a slab made
of a finite odd number of layers Nz � 1 and a very large
number of unit cells in the x, y directions, Nx,y � Nz.
Topologically the slab is a 2D Chern insulator, say of
C = 1. Hence the x−z and y−z sides host chiral modes.
Weak disorder localizes all bulk states except states close
to two critical energies Ec,1, Ec,2, one per band. The de-
localized states couple the chiral modes on opposite sides,
thus allowing a transition between different values of the
Chern number. Assuming that the disorder is uniformly
distributed within the system, we conclude that the delo-
calized bulk states are delocalized in all three dimensions
in the slab. As disorder gets stronger, Ec,1 and Ec,2 get
closer to one another, until at some critical disorder they
become equal, and the system turns trivial at all energies
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FIG. 1. Localization and band topology. (a-b) Localized
(grey) and delocalized (yellow) regions in the spectrum as a
function of disorder for 3D trivial and axion insulators, respec-
tively. (c) Layer construction for the axion insulator, where
the black box denotes the 3D unit cell. Sublayers A (blue) and
B (orang) are decorated by 2D Chern insulators with Chern
numbers C = 1,−1, respectively. Each unit cell has eight in-
version centers (tx/2, ty, tz) (tx,y,z = 0, 1), all of which lie in
a Chern layer. (d) Two possible inversion-breaking dimerized
phases (I and II), which are inversion partners. (e) Side view
of the domain wall in the xz direction. (f) A disordered axion
insulator with random dimerizations, where the red and blue
regions represent phases I and II, respectively. The domain
walls between phases I and II are Chern layers and host ex-
tended states.

[3–6]. (See Ref. [57] for more discussions.)

Now we approach the 3D limit, making Nx, Ny, Nz all
very large and comparable to one another. As long as Nz
is odd (required by inversion symmetry) and the chemical
potential is tuned properly, the Chern number is C = 1,
there still is a chiral gapless mode encircling the sample
on the side surfaces, and there would still be bulk delo-
calization transition as a function of energy and disorder.
We expect that the critical energies Ec,1 and Ec,2 develop
into two energy regions of extended states, as shown in
Fig. 1b.

This analysis relies on inversion symmetry: If the in-
version is broken, e.g., two layers within each unit cell
are dimerized, each dimerized pair becomes a trivial in-
sulator, in which disorder localizes all states. The Chern
transition is then confined to one unpaired 2D layer.

While this analysis is based on the Chern number that
the system carries for an odd Nz, the thermodynamic 3D
limit should not depend on the parity of Nz. Adding an
additional C = −1 layer to the system will not change
the localization properties, because the extra layer ap-
plies a local perturbation, while the delocalized states
are extensive. Thus, the delocalized states occurring at
the band gap at a critical disorder strength will remain
even in the absence of a Chern number, and will signify

the transition from an axion to a trivial insulator.

In order to form a physical picture of this transition we
define two inversion-breaking dimerized phases (Fig. 1d):
(I) where sublayer A at z ∈ Z couples with sublayer B at
z − 1

2 , and (II) where sublayer A at z ∈ Z couples with

sublayer B at z + 1
2 . Phase-I and phase-II are inversion

partners, and the domain wall between them is a Chern
insulator layer. The domain wall does not have to be
perpendicular to z-direction (see Ref. [57] and Fig. 1e).
Inversion-breaking disorders can then be simulated by
placing random dimerizations in the 3D bulk, so that the
bulk randomly forms phase-I and phase-II in different
regions (Fig. 1e). When the volume fractions of phase-
I and phase-II are equal, we say inversion symmetry is
respected on average. We have only considered dimeriza-
tion disorder for simplicity. More complicated disorder
configurations do not change the conclusion [57].

Since each domain wall hosts a 2D Chern insulator
with C = ±1, it must host 2D delocalized states at the
energy of a delocalization transition. If the domain walls
form an infinitely large cluster, the extended states ex-
tends over the 3D bulk. Then, when the chemical poten-
tial is at the energies of these extended states, a 3D delo-
calization transition happens to a trivial insulator phase.
On the contrary, if the domain walls do not extend to
infinity, the disordered axion insulator and trivial insu-
lator would be connected without phase transition. By
the classical 3D continuum percolation theory [58], the
domain walls extend to infinity if the volume fraction p1
of phase-I (or p2 = 1−p1 of phase-II) is between 0.17 and
0.83. Therefore, we expect 3D delocalization transition
to exist if inversion symmetry is respected on average
(p1 = 0.5) or broken weakly enough (0.17 < p1 < 0.83).

Quantum network model Our classical percolation
argument neglects quantum tunneling between neighbor-
ing domain walls. To verify the existence of delocal-
ization transition, we study a disordered 3D quantum
network model for the layer-constructed axion insula-
tor, which describes Anderson transition with respect to
changing chemical potential. The model includes only
one band for each layer, and is thus suitable for a transi-
tion taking place within that band (Fig. 1b). Its analysis
also demonstrates the effect of inversion symmetry break-
ing on this transition.

In the decoupled layers limit, each sublayer forms a
2D Chalker-Coddington quantum Hall network model [5]
(Fig. 2a-b). For convenience, here we shift the inversion
centers to (tx/2, ty/2,

1
4 + tz/2) (tx,y,z = 0, 1) such that

the Chern layers are in the z = 1
4 and z = 3

4 planes.
The blue (orange) and empty regions in sublayer A (B)
have C = 1 (C = −1) and C = 0, respectively, while
the red lines represent the chiral edge modes. The am-
plitude ψi of a chiral mode propagating through a bond i
gains a (quenched) random propagation phase eiφi . Two
chiral modes are coupled by tunneling at the crossings
of the red lines. As shown in Fig. 2b, the two outgo-
ing modes (ψ2, ψ4) are scattered from the two incoming
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FIG. 2. The quantum network model for the axion insulator.
(a) A side view of the 3D system. The blue (orange) regions
have a Chern number 1 (-1). The grey box represents the
repeating unit. The inversion centers are at (tx/2, ty/2,

1
4

+
tz/2) for tx,y,z = 0, 1. The red lines with arrows are the chiral
modes surrounding the Chern regions. (b) Scatterings at the
single-layer level. Here tA,B and rA,B are the transmission
and reflection amplitudes of the scattering, respectively. (c)
Introducing inter-layer scatterings. The nodes C,D (E,F )
scatters the edge states in the blue layer to the edge states
in the orange layer in the above (below). (d-e) The localized
edge states of the Chern regions in the trivial (tA,B = 1) and
axion insulator (tA,B = 0) limits, respectively.

modes (ψ1, ψ3) as

ψ2 = −tA,Bψ1+rA,Bψ3, ψ4 = rA,Bψ1+tA,Bψ3, (1)

where tA,B = cos θA,B and rA,B = sin θA,B are referred to
as the transmission and reflection amplitudes in sublayer
A and B, respectively, which we assume are spatially uni-
form. We choose tA,B and rA,B as real numbers because
we can absorb their phases into the propagating phases
φi. The sublayers go through a phase transition from
C = ±1 at π

4 < θA,B ≤ π
2 to C = 0 at 0 ≤ θA,B < π

4
[5, 57]. At the single energy θA,B = π

4 , states in each
layer are delocalized.

The decoupled layers limit is inversion symmetric with-
out disorder, i.e., with spatially uniform propagation
phases φi. Looking at the system as 3D, the pillars
(Fig. 2c) containing the colored regions of sublayers A
or B are regions of axion insulators. while the comple-
mentary empty regions are trivial insulator regions. We
emphasize that there is no explicit relation between the
axion or trivial regions and the phase-I or phase-II shown
in Fig. 1. Both the axion regions and trivial regions are
centrosymmetric by themselves, while phase-I and phase-
II transform to each other under the inversion. Turning
on the disorder (randomness in phases φi) breaks inver-
sion symmetry, but preserves it on average when the φi
are uniformly random.

We introduce inter-layer scattering nodes at the mid-
points of each square, half way between the the intra-
layer ones, represented by blue vertical lines in Fig. 2c-e.
On each square there are four scattering nodes. Nodes of
the C,D types couple blue layer edge modes to the orange
layer edge modes in the layer above, while E,F types
couple the blue layer edge modes to the layer below. We
parametrize the transmission and reflection amplitudes
in the nodes tI = cos θI and rI = sin θI (I = C,D,E, F ),
respectively. More details of the scattering parameters
are given in Fig. S1 in Ref. [57]. We use four variables
µ, γ, η, δ to parameterize the angles:

θA =
π

4
+ µ− η, θB =

π

4
+ µ+ η, (2)

θC = θD = γ(1− δ), θE = θF = γ(1− δ) + δ
π

2
, (3)

µ can be interpreted as the chemical potential, η tunes
the potential energy difference between two sublayers,
γ and δ determine the inter-layer couplings. Inversion
transforms the nodes C,D to E,F , respectively (Fig. 2),
and therefore inversion symmetry is broken on average
when δ is non-zero. We set γ = π/8 in the rest of this
work such that the inter-layer coupling is weak compared
to the intra-layer couplings. As explained in the following
paragraphs, the insulating limits are independent with γ,
hence the choice of γ does not qualitatively change the
phase diagram of the quantum network model.

We now study the delocalization transitions with re-
spect to the chemical potential (µ), the potential differ-
ence between two layers (η), and the inversion symmetry
breaking (δ). For an inversion symmetric (on-average)
system η = δ = 0. The sublayers are either both trivial
or both topological. When µ = −π4 , one has tA,B = 1,
and the chiral modes surrounding the C = ±1 regions
are closed in each layer and but are vertically connected
to the closed chiral modes in the nearby layers (Fig. 2d).
The axion regions can then be adiabatically shrank to
zero, so the 3D bulk is in the trivial insulator phase.
When µ = π

4 , the chiral modes flow surrounding the triv-
ial regions (tA,B = 0) as shown in Fig. 2e, so the 3D bulk
is in the axion insulator phase. In this case, each Chern
layer contributes to a chiral mode on the side surface of
the system. Therefore, tuning µ from −π4 to π

4 tunes
the chemical potential from the bottom to the top of the
topological bands of the axion insulator (Fig. 1b). In
particular, when µ = 0, θA,B are equal to π/4, and the
3D bulk must be delocalized because the chiral modes
form a connected network, corresponding to the region
of delocalized states in Fig. 1b.

In contrast, varying η from 0 to π/4 for µ = δ = 0,
each sublayer A becomes a trivial insulator (θA = 0),
while each sublayer B becomes a Chern insulator with
C = −1 (θB = π

2 ). Therefore, η drives the system into a
3D QAH insulator.

Finally, we consider strong inversion symmetry break-
ing. When δ = 1, there is tC = tD = 1, tE = tF = 0, and
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FIG. 3. Numerical results. (a) The normalized localization
length Λ of the quasi-1D system is plotted as a function of µ
at different system sizes (widths) L. The system is delocalized
for µ between the two Anderson transition points µc ≈ ±0.56.
(b) shows the one-parameter scaling of the relevant part of
Λ around µ ≈ 0.56. The two branches correspond to µ >
0.56 and µ < 0.56, respectively. (c) shows the localization
transition of Λ due to the inversion symmetry breaking on
average, where δ tunes the symmetry breaking strength.

hence a blue layer is decoupled from the orange layer
above it but is fully coupled to the orange layer below
it. The 3D network decomposes into disconnected 2D
slices in the z-direction. Since each slice has a vanishing
Chern number, there is no guaranteed delocalized state.
Therefore, no delocalization transition with respect to µ
is expected if δ = 1. See Ref. [57] for more details.

Numerical results The localization length of the net-
work model can be computed with a quasi-1D geometry
[5, 59, 60]. Technical details are in Ref. [57]. A quasi-1D
system is always localized, with the localization length
depending on the transverse dimension L. The object of
interest is the normalized localization length Λ = λ/L
[59, 60]. When Λ is finite or divergent in the L → ∞
limit, the 3D states are delocalized.

We start with inversion symmetry satisfied on average,
i.e., δ = 0. (δ is defined in Eq. (3).) For η = 0, Fig. 3a
shows Λ(µ,L) as a function of µ and L. At µ = 0, Λ(µ,L)
increases with L, which implies 3D delocalized states.
In contrast, at µ = ±π4 , Λ(µ,L) decreases with L and
approaches zero as L → ∞, implying localized states.
As we discussed earlier in Fig. 2, µ = −π4 and µ = π

4
correspond to the trivial insulator and axion insulator
phases, respectively. Fig. 3a indicates that there is a
delocalized metallic phase between them with the two
delocalization Anderson transitions happening at µc ≈
±0.56, where Λ(µ,L)’s for different L’s cross each other.

On the insulator side of the transitions, the 3D local-
ization length diverges as ξ ∼ |µ−µc|−ν , with a universal
exponent ν > 0. For sufficiently large L, Λ(µ,L) is sub-
ject to the one-parameter scaling of the single parameter
L/ξ [59, 60]. When L is small, Λ(µ,L) also contains L de-
pendent irrelevant terms because of the finite-size effect,
and assumes the following form [61]:

Λ(µ,L) = G0((µ− µc)L
1
ν ) + LyG1((µ− µc)L

1
ν ). (4)

FIG. 4. Disordered topological phases. (a) Phase diagram in
the parameter space of µ and η. δ is set to zero. (b) Gap clos-
ing transition from trivial insulator to axion insulator. The
± symbols represent the parities of the Bloch states.

Here y < 0 is an irrelevant scaling exponent, and Gi(x)
(i = 0, 1) are undetermined functions which we keep up
to the third order. We fit the parameters by the least
square method [57] for the data points in the dashed
rectangular in Fig. 3a. Fig. 3b shows the relevant part
Λc = G0 as a function of L|µ − µc|ν . The universal
exponent from our fitting is ν = 1.42±0.12, which is close
to that of the 3D Anderson transition under magnetic
field (where ν is found 1.3 ± 0.15 [62], 1.45 ± 0.25 [63],
1.43± 0.04 [64], and 1.443± 0.006 [65]).

We have theoretically presented arguments that strong
inversion symmetry breaking leads to localization and
showed that in the network model δ = 1 corresponds
to an inversion-broken localized limit. By tuning δ in
the metal phase at µ = η = 0, we observe an Anderson
transition at δ ≈ 0.81 to the inversion-broken localized
phase (Fig. 3c).

Keeping δ = 0 and applying finite-size scaling to
nonzero η, which represents the potential energy differ-
ence between sublayers A and B, we obtain a phase dia-
gram of Fig. 4a in the parameter space of µ, η with inver-
sion symmetry respected on average. A new insulating
phase arises near µ = 0, η = π

4 . For a clean system, at
µ = 0, η = π

4 , sublayer A is at a C = 0 state and sublayer
B at C = −1, hence this phase is a 3D QAH insulator
[66].

Discussion We used here µ as the transition tuning
parameter (Fig. 1). ANother possible tuning parameter
is the band gap, for which the transitions happen at gap
closings that change the topology of the bands (Fig. 4b).
We quantitatively map the clean quantum network model
to an effective Hamiltonian, where the parameter µ plays
the role of gap and the diffusive metal in Fig. 4a is found
to be equivalent to the Weyl semimetal [67–71] with dis-
order [72–74]. See Ref. [57] for more discussions. We
expect the delocalization transitions to be studied in the
recently proposed axion insulator materials [49–51, 75–
80] in the future.
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