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The microscopic mechanism by which amorphous solids yield plastically under an externally ap-
plied stress or deformation has remained elusive in spite of enormous research activity in recent
years. Most approaches have attempted to identify atomic-scale structural “defects” or spatio-
temporal correlations in the undeformed glass that may trigger plastic instability. In contrast, here
we show that the topological defects which correlate with plastic instability can be identified, not in
the static structure of the glass, but rather in the nonaffine displacement field under deformation.
These dislocation-like topological defects (DTDs) can be quantitatively characterized in terms of
Burgers circuits (and the resulting Burgers vectors) which are constructed on the microscopic non-
affine displacement field. We demonstrate that (i) DTDs are the manifestation of incompatibility
of deformation in glasses as a result of violation of Cauchy-Born rules (nonaffinity); (ii) the result-
ing average Burgers vector displays peaks in correspondence of major plastic events, including a
spectacular non-local peak at the yielding transition, which results from self-organization into shear
bands due to the attractive interaction between anti-parallel DTDs; (iii) application of Schmid’s law
to the DTDs leads to prediction of shear bands at 45 degrees for uniaxial deformations, as widely
observed in experiments and simulations.

Identifying the mechanism of plastic deformation in
amorphous solids, such as glasses, is one of the major un-
solved problems in condensed matter physics. In crystals,
plastic flow is mediated by dislocations. These are topo-
logical defects corresponding to one missing crystalline
plane in the lattice (edge dislocations) or to a lattice
plane shifted by one layer (screw dislocations). While
the mechanism of dislocation-mediated plastic deforma-
tion in crystals was already figured out in seminal work
by Taylor [1], Polanyi [2], and Orowan [3] in 1934, a com-
parable mechanistic understanding of plastic deformation
in glasses is still missing.

Numerical simulation studies and earlier theories of
plastic activity in glasses have established the existence of
so-called Shear Transformation Zones (STZs) [4]. These
arise in regions where atomic motions are strongly non-
affine, i.e. with additional (nonaffine) displacements on
top of those (affine) dictated by the macroscopic strain,
that are required from mechanical equilibrium [5, 6].
However, STZs have remained poorly characterized in
terms of their structure and topology, until pioneering
work by Procaccia and co-workers [7] suggested that
STZs can be identified with Eshelby-like quadrupolar
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events in the displacement field that self-organize into 45-
degrees shear bands to minimize the elastic energy [7] (see
also [8]). Although this mechanism of self-organization of
quadrupoles can explain observations of sinusoidal den-
sity fluctuations in shear bands of metallic glasses [9, 10],
the quadrupoles are not the only shape of plastic insta-
bilities, and in certain systems are rarely observed or not
observed at all [11, 12].

In this paper, we provide the more general answer to
the problem of identifying the mechanism of plastic insta-
bility in amorphous solids, and its topological nature. We
start by showing that the (nonaffine) displacement field
of glasses presents well defined topological singularities
connected with the breakdown of the compatible defor-
mation condition, that we demonstrate here for the first
time for glasses. These topological structures are similar
to dislocations (and/or vortices in superfluids), with the
important difference that dislocations in crystals appear
in the undeformed lattice, whereas here they appear in
the displacement field under deformation. This is linked
to the intrinsic out-of-equilibrium nature of glasses and
it is also a fundamental difference with respect to earlier
works that aimed at describing dislocations in the static
structure of undeformed glass [13–16].

We show that these dislocation-like topological defects
(DTDs) are the carriers of plasticity, since they lead
to an average Burgers vector that strongly correlates
with plastic events, and displays a strong global peak
at the yielding point. This yielding peak is highly
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correlated throughout the material as expected for a
sample-spanning slip system. Based on this evidence,
a consistent theoretical description of plasticity in
amorphous solids can be formulated, with predictions in
excellent agreement with observations.

The mechanical deformation in a material can be char-
acterized by the displacement (vector) field ui [17, 18],
which defines the deviations of the material points from
their original positions (xi) in the undeformed frame:

x′i = xi + ui . (1)

The i index here indicates the different spatial directions
i = (x, y, z). The displacement vector can be decomposed
into its affine and nonaffine contributions [19]

ui = uAi + uNA
i = Λki xk + uNA

i (2)

where Λki is a matrix of constants. Non-zero non-
affine displacements uNA

i arise in glasses and non-
centrosymmetric crystals in order to preserve mechanical
equilibrium in the affine position dictated by the applied
strain field [5, 6, 20]. In ordered crystals, the strain tensor
εij ≡ ∂(iuj) obeys the so-called compatibility constraint
[21, 22]:

∇ × ∇ × ε = 0 , (3)

which is equivalent to saying that dui is a closed differ-
ential form.
More in general, considering the total displacement field,
one can define a Burgers vector [23] as the line integral
of the vector field dui on a closed loop L,

bi ≡ −
∮
L
dui = −

∮
L

dui
dxk

dxk . (4)

As shown below, the Burgers vector vanishes for affine
displacements and it is finite for nonaffine ones:

bAi = 0 , bNA
i 6= 0 . (5)

A non-vanishing Burgers vector indicates the presence
of topological defects inside the loop L. In particular,
it is associated to a non-trivial winding number around
the line defect. The presence of a finite Burgers vector is
equivalent to the explicit breaking of an emergent topo-
logical symmetry expressed in terms of the conservation
of a two-form current JµνI [24, 25]:

∂µJ
µν
I 6= 0, with JµνI ≡ ε

µνρ∂ρuI , (6)

which plays the exact same role of the Bianchi identity
in the classical covariant Maxwell formulation of electro-
magnetism (EM) [26, 27]. In other words, the presence
of defects and a finite Burgers vector is in 1-to-1 corre-
spondence to the existence of magnetic monopoles in EM
[28].
Other typical examples are those of dislocations in crys-
tals and vortices in superfluids [23, 29–32]. The role of

these generalized global symmetries has been recently
recognized to be crucial to classify topological phases of
matter á la Landau [33–35]. For more details regard-
ing the connection between generalized global symme-
tries and nonaffine displacements see the companion pa-
per [25].
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Figure 1. Top: A snapshot of the interpolated 2D displace-
ment field ui for a single replica at γ = 0.08. The colors
indicate the amplitude of the displacement field |~u|. The red
curve is the closed Burgers loop with R = 10 on which the
Burgers vector is computed using Eq.(4). Bottom: A zoom
around a strongly nonaffine region with vortex-like shape.

There [25], we showed more formally that the non-
affine dynamics typical of liquids and amorphous systems
necessarily implies the presence of finite Burgers vectors
and topological defects. Here, we make one step forward
and we demonstrate these concepts on glass deformation
data taken from numerical simulations of a coarse-
grained (flexible-chain) polymer glass well below the
glass transition used in previous work [36], undergoing
athermal quasistatic (AQS) shear deformation.

In Fig. 1 we show a typical snapshot of the displace-
ment field at strain γ = 0.08, with a system-spanning
Burgers circuit. Several regions with strongly nonaffine
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configurations exhibiting vortex-like shape are found. At
those points, the displacement field is not single valued
and the integral of the Burgers vector around those
region is non-zero.

The displacement field was measured from the MD
simulation and subsequently subjected to an interpo-
lation procedure in order to obtain a smooth field for
further formal calculations (for details see the Sup-
plementary Material [37] which includes Refs.[38–40]).
Evaluating the Burgers integral according to Eq.(4)
gives a non-zero Burgers vector bi. As shown in [37],
the same calculation on a purely affine displacement
field, gives bi = 0. Then in Eq.(6), this implies that
the displacement field is single-valued and ∂µJ

µν
I 6= 0.

This also implies the violation of the compatibility
condition [41] already in the small deformation (elas-
tic) regime of glasses, which was speculated to occur
when the deformation is nonaffine [42], and that we
demonstrate here for the first time for glasses. This
finding also indicates that not only the reference metric
space is curved [16], but also that the affine connec-
tions (Christoffel symbols) are not symmetric in their
lower indices and the Einstein-Cartan torsion tensor is
non-zero [43]. Importantly, while the above facts have
been established in crystal plasticity for large plastic
deformations [41], we demonstrate here microscopically
that they apply to glasses even in the elastic infinitesimal
deformation regime, providing a direct link between
geometry and plasticity.

In order to make the analysis of the data robust, 10
replicas were created and each was analyzed with stress-
strain and Burgers vector analysis of the DTDs. The
results are shown in Fig. 2. As already anticipated, the
norm of the Burgers vector |bi| averaged over the differ-
ent replica displays a dominant and sharp peak at the
location of the yielding point, around γ ≈ 0.1. As shown
explicitly in the Supplemental material [37], (I) the norm
of the Burgers vector computed on the single replica is
able to locate not only the yielding point but also the sec-
ondary plastic events manifest in the stress-strain curve
as sudden stress fall-off. Strikingly, we observe clear
peaks of |bi| in correspondence of these mechanical in-
stabilities signalled by nearly-zero or slightly negative
eigenvalues of the Hessian matrix [44, 45]. And, (II) the
norm of the Burgers vector is independent of the topol-
ogy of the closed Burgers loop, This is a manifestation
of the topological nature of this object, which “counts”
the nonaffine displacements inside the close loop, and
demonstrates that these DTDs are genuine topological
invariants.

In Fig. 3 we present a different analysis of the same
data, where now we vary the linear size of the Burgers
circuit used to measure the norm |bi| as a function of
strain. This analysis reveals much of the spatial extent of
the various plastic events. It is seen that, upon increasing
the linear size of the Burgers circuit L or its radius R,

the peak of |bi| corresponding to the yield point γ =
0.1, grows enormously, much more than the peaks of the
plastic events at γ = 0.05− 0.06 and γ = 0.08, and even
more than the post-yielding peaks at γ = 0.15. This
fact indicates the formation of a slip system spanning
the whole material right at yielding, consistent with the
formation of shear bands in Fig.4. A systematic plot of
the Burgers peak amplitudes as a function of loop radius
R for plastic events at varying γ is shown in [37].

Based on the above observations, it is possible to for-
mulate a mechanism of strain-softening and plastic yield
in glasses mediated by DTDs and their mutual interac-
tion. After having verified Eq. (4) on the basis of the
MD simulations, and assuming polar coordinates (z, θ),
the displacement field around a DTDs follows immedi-
ately as ui = biθ/2π, with the corresponding local elastic
strain field being singular, εθz = εzθ = b/4πr [46], where
b ≡ |bi| is the modulus of the Burgers vector.
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Figure 2. The magnified stress-strain curve (purple circles)
and the norm of the Burgers vector |bi| (orange) averaged over
10 independent replica. The vertical dashed line indicates the
location of the main peak. The gray shaded area emphasizes
the position of the yielding point.

By simple geometry [25], one can show that |bi| ∝
|uNAi |. In turn, from theory, numerical simulations and
experiments [19, 47–49], it is known that |uNAi | ∝ γ,
where |uNAi | is an average over the sample. This im-
plies that, due to the nature of nonaffine displacements
to grow with γ, |bi| has, on average, a tendency to grow
with the applied strain γ as well. This is not exactly
what emerges from the single replica shown in the Sup-
plemental information [37], where the behaviour of |bi|
vs γ is rather noisy and intermittent, and occurs mainly
through bursts (peaks) in correspondence of major plas-
tic events, and it is these bursts that grow as γ increases.
Although a precise mechanism for DTDs multiplication
and growth upon increasing the strain is yet to be identi-
fied, it becomes statistically more likely that DTDs begin
to interact with each other in the plastic events where |bi|
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becomes large. In particular, there is an increased like-
lihood that two DTDs come together with anti-parallel
Burgers vectors b1 and b2. It can be shown, using the
Peach-Köhler force, that this gives rise to an attractive
interaction force given by [18]:

f = −Gb1 b2
2π r

, (7)

where b1 and b2 are the moduli of the Burgers vectors of
the two interacting DTDs and G is the shear modulus.
This force is clearly large around the main plastic events
where |b| is large.
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Figure 3. Top: The norm of the Burgers vector |bi| as a
function of the closed loop radius R for a single replica. In
purple the corresponding stress-strain curve. Bottom: The
same plot with the norm of the Burgers vector for R = 10.

Hence, it is possible to have a mechanism whereby the
rate of encounter and “coagulation” between two DTDs
with anti-parallel Burgers vector becomes large. DTDs
therefore attract each other, with an effective attraction
force given by Eq.(7), and tend to coagulate into larger
aggregates in correspondence of plastic events. This
shear-induced aggregation process eventually leads to the
formation of slip systems (i.e. shear bands), as the strain
increases.

By leveraging these concepts, it is also possible to pre-
dict the orientation of the slip systems. Let σ = F/A0

be the tensile stress acting on the sample, for example
a uniaxial stress, with F the applied tensile force and
A0 the sample cross-section area. Denoting with φ the
angle between the normal to the slip plane and the direc-
tion of the tensile force F , and with λ the angle between

the slip direction and the direction of F , the slip plane
area is thus given by As = A0/ cosφ. Hence the tensile
force resolved in the slip direction, F cosλ, gives rise to
a resolved shear stress given by the well-known Schmid’s
law [50, 51]:

σRSS = σ cosφ cosλ. (8)

In general, the three directions are not coplanar, hence
φ+ λ 6= 90o, while φ+ λ = 90o is the minimum possible
value [50, 51]. DTDs will, in general, aggregate into slip
bands that are oriented randomly. For a given σ, slip
systems will therefore be initiated by facilitated motion
of DTDs that self-organize in a slip plane which experi-
ences the largest resolved shear stress σRSS , similar to
what happens with avalanches that initiate in a spatial
direction where the resolved stress is largest and thus
can overwhelm frictional resisting forces. The largest re-
solved stress clearly corresponds to the maximum value
of cosφ cosλ. Under the constraint min(φ + λ) = 90o,
this happens for φ = λ = 45o. Hence, for a uniaxial de-
formation or for a simple shear deformation, shear bands
due to aggregation of DTDs will form at an angle of 45o

with respect to the tensile axis as observed in our MD
simulations, Fig.4, as well as other simulations and ex-
periments [7, 9, 10].

Figure 4. The evolution of the displacements vector ~u by
increasing the external strain γ. The background color shows
the Burgers vector norm and the arrow its direction and local
amplitudes. The dashed white lines guide the eye towards the
45◦ shear band forming.

In summary, we have shown that nonaffine displacements
in the deformation of amorphous materials lead all the
way to the formation of topological singularities (DTDs)
in the displacement field, which can be quantitatively
characterized by Burgers vectors. We have demonstrated
that DTDs are responsible for plastic events on the ex-
ample of athermal quasistatic shear of model polymer
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glasses quenched at low temperature. The spatially av-
eraged norm of the Burgers vectors displays peaks cor-
responding to the plastic events, and an extremely evi-
dent non-local (system-spanning) peak at the yield point.
Treating DTDs in analogy to dislocations may allow one
to formulate a self-consistent mechanism of slip band for-
mation due to the attractive force between anti-parallel
DTDs and due to their growing population upon increas-
ing the strain. The preferential alignment of coagulated
DTDs (shear bands) along the 45◦ degrees direction with
respect to the tensile axis is predicted by the Schmid’s
law, in agreement with all experiments and numerical
simulations. This work provides the quantitative identi-
fication of the long-sought “defects” which mediate flu-
idity and plasticity in amorphous solids [52]. Different
from crystals, and from earlier work on glasses [13], the
dislocation-like topological defects are not to be found
in the static structure but, crucially, in the displacement
field under deformation. Furthermore, they originate di-
rectly from nonaffine displacements [5, 6, 19]. Since the
nonaffine displacements in turn originate from the locally
low degree of centrosymmetry in the static structure of
amorphous systems, which is a quantifiable [53, 54], this

finding opens up the way for identifying the structural
signatures of plasticity in glasses [55–57], but now in
terms of atomistically well-defined quantities. Further-
more, it can provide a metric to better distinguish ductile
from brittle first-order like failure [55, 58].

Finally, this work provides a quantitative identification
of topological effects in amorphous systems [59] leading
to a new geometrical description of plasticity and de-
formations in glasses. This has potential to open new
directions in the chase for “order” in disordered systems.
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