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The Hopf insulator is a weak topological insulator characterized by an insulating bulk with con-
ducting edge states protected by an integer-valued linking number invariant. The state exists in
three-dimensional two-band models. We demonstrate that the Hopf insulator can be naturally real-
ized in lattices of dipolar-interacting spins, where spin exchange plays the role of particle hopping.
The long-ranged, anisotropic nature of the dipole-dipole interactions allows for the precise detail
required in the momentum-space structure, while different spin orientations ensure the necessary
structure of the complex phases of the hoppings. Our model features robust gapless edge states
at both smooth edges, as well as sharp edges obeying a certain crystalline symmetry, despite the
breakdown of the two-band picture at the latter. In an accompanying manuscript [1], we provide
a specific experimental blueprint for implementing our proposal using ultracold polar molecules of
40K87Rb.

Topological insulators (TIs) exhibit conducting surface
states protected by the existence of topological invariants
associated with their underlying spin-orbit-coupled band
structures [2–9]. The past decade has seen a tremendous
amount of progress in classifying and understanding the
physical properties of these states. In particular, the in-
terplay between a system’s symmetries and dimension-
ality leads to a rich landscape of topological insulators,
captured by the so-called ‘Tenfold Way’ classification of
free fermion theories [10, 11]. More recently, the struc-
ture of the table has been refined with the inclusion of
crystal symmetries, giving topological crystalline insula-
tors [12] and higher-order topological insulators [13]. An
ongoing task is to find physical realizations of further
entries in the table; in cases where material implemen-
tations have not been found, the same topological states
have often instead been realized in ultracold atomic gases
trapped by optical lattices [14].

Despite the ubiquity of the Tenfold Way, there are still
topological states beyond its remit. One example is the
Hopf Insulator (HI) [15–18]. Existing in three dimen-
sions in the absence of any time-reversal or particle-hole
symmetries, the Tenfold Way predicts that no topological
state can exist, yet the Hopf Insulator features an insu-
lating bulk and conducting edges protected by an integer-
valued Z topological invariant. The apparent contradic-
tion is avoided in two ways. First, HIs are weak TIs,
meaning they only exist in two-band models, and the ad-
dition of further non-interacting bands can destroy the
topology. Weak TIs are not captured by the Tenfold
Way. Second, the Z topological invariant is not the usual
Chern number, but is instead a linking number famil-
iar from knot theory and deriving from a relation to the

FIG. 1. Three-dimensional two-band systems implement
maps from the Brillouin zone T 3 to the Bloch sphere S2. The
pre-image of any point in S2 is a closed loop in T 3. There
exist topologically non-trivial states, Hopf Insulators (HIs),
in which the pre-images of any two points on S2 are linked

in T 3. HIs are characterized by a non-zero Hopf invariant h
equaling the linking number of the loops; pictured schemat-
ically are three points on S2 and their pre-images in T 3 for
both a HI with h = 1 (left) and a trivial insulator with h = 0
(right).

Hopf map [15, 19]. Despite a recent resurgence of inter-
est in HIs [15–18, 20–31], fundamental difficulties have
led to only a few proposals for their physical implemen-
tation [16].

There are three main barriers to implementing HIs in
any tight-binding model of (say) electrons hopping on a
lattice. First, the necessity of having precisely two bands
rules out many material implementations. Second, as
we will see, the nature of the non-zero linking number
invariant requires a delicate structure in reciprocal space,
meaning real-space interactions must be specified to large
distances. Third, a strong spin-orbit coupling is required
between the two bands.

In this Letter, we demonstrate that these barriers may
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be overcome by implementing HIs in lattices of dipo-
lar interacting spins. Electron ‘hopping’ can be replaced
by transitions between rotational eigenstates, which are
much easier to create and control; the long range of the
dipole-dipole interaction then naturally realizes the long-
distance hoppings. The two bands can be created from
two sub-lattices, and different spin orientations can lead
the hoppings to have a complex phase structure able
to simulate a strong spin-orbit coupling. Further, we
demonstrate that the key experimental signatures of HIs,
gapless edge states, are present at any smooth (adiabatic)
termination of our model and are robust to all smooth
perturbations. This is in support of previous theoretical
arguments for topologically-protected gapless modes at
smooth boundaries, where translational-invariance and,
as a consequence, the two-band picture are preserved.
Nevertheless, we show that gapless edge states may per-
sist at judiciously-chosen sharp (non-adiabatic) edges,
owing to a crystalline symmetry that stabilizes the Hopf
insulator to higher bands. This connects recent work pre-
dicting this ‘crystalline-symmetric Hopf insulator’ with
past numerical findings, which similarly observed gapless
modes at sharp edges.
Model.—The Hopf Insulator (HI) can be understood

by considering the three-dimensional two-band system at
half filling described by the Hamiltonian

Ĥ(k) =

3
∑

i=1

ni(k)σ̂
i (1)

with Pauli matrices σ̂i. The bulk of the system is as-
sumed gapped, requiring |n(k)| > 0. Eq. (1) defines a
map from the three-torus T 3 — the Brillouin zone in
which the wavevectors k reside — to the Bloch sphere
S2 describing the possible states of the two-band system.
The pre-image of any point on S2 is then a closed loop
in T 3. Restricting attention to the case in which the sys-
tem has zero Chern number across any two-dimensional
slice through the three-torus, the linking number of any
two of these loops (necessarily an integer) is equal to the
Hopf invariant of the map [19]:

h = −
1

4π

∫

BZ

d3k
∑

ijk

ǫijkAi∂jAk (2)

with ǫijk the Levi-Civita symbol, ∂i = ∂/∂ki, and
Ai (k) = −i〈uk|∂i|uk〉 the Berry connection for eigen-
state |uk〉. Changing h requires the gap to close. The
h = 0 state, in which all loops are unlinked, is a trivial
insulator, and so for ni(k) such that h > 0 the system
is in a topologically non-trivial state: the Hopf insula-
tor [7, 15]. This Z topological invariant is fundamentally
distinct from the Chern number appearing in the Ten-
fold Way. The situation is shown schematically in Fig. 1.
The HI is a weak TI, meaning that mixing with further
non-interacting bands can destroy the topology.

FIG. 2. The proposed experimental set-up consists of dipolar
molecules confined in a three-dimensional optical lattice, with
two sub-lattices A and B separated in the z-direction. A
combination of applied electric and magnetic fields and the
intensities of the lattice beams themselves set the molecules’
rotational axes along the z-direction, and are tuned so that
|J = 1,m = 0〉 excitations (depicted as z-oriented molecules)
on the A sub-lattice can ‘hop’ to |J = 1,m = 1〉 excitations
(depicted as molecules spinning in the xy-plane) on the B sub-
lattice via the dipolar interaction, while conserving energy.
Adding space- and time-dependence to these parameters leads
to Floquet modulations µα

v
(t) of the on-site energies, allowing

further control over the hopping magnitudes.

Recently [18], it was realized that if the system obeys
a certain crystalline symmetry,

J −1Ĥ (k)J = −Ĥ (k)∗ , (3)

where JJ ∗ = −1, the HI is promoted to a strong TI
characterized by a Z2 invariant (an example of a topolog-
ical crystalline insulator, TCI) [18]. In two-band models
at half-filling this symmetry is always present, with any
half-filled two-band Hamiltonian obeying Eq. (3) with
J = σ̂y. In systems with more than two bands it can be
viewed as the composition of inversion and particle-hole
symmetries.
Our implementation of the Hopf Insulator is based on

the following Hamiltonian:

Ĥeff =
1

2

∑

v,r6=0

∑

αβ

tαβr â†v+r,αâv,β +H.c.

+
∑

v

∑

α

µαâ†
v,αâv,α (4)

where a†
v,α creates a hard-core boson at lattice site v and

sub-lattice α ∈ {A,B}. We adopt a bosonic rather than
fermionic description, permitted by the single-particle
nature of the HI, as we will model the hopping of elec-
trons between sites with the exchange of angular momen-
tum eigenstates. The sum over positions r indicates the
presence of long-range hoppings necessary to realize the
delicate k-space structure needed for all loop pre-images
to link. The model has two sub-lattices, which will form
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the two bands. Both intra- and inter-sub-lattice hop-
pings are present, tαβr , as well as a sub-lattice-dependent
chemical potential µα.
Dipolar Hopf insulator.—We propose an implementa-

tion of the Hamiltonian of Eq. (4), which can naturally
be realized in three dimensional lattices of dipolar inter-
acting spins. Our proposal can be realized in a number
of experimental platforms, ranging from highly-magnetic
neutral atoms such Erbium and Dysprosium [32–35]
to strongly-coupled solid-state spin defects [36–38] to
Rydberg-dressed atom tweezer arrays [39–41]. Here, we
focus on ultra-cold polar molecules trapped in a three-
dimensional optical lattice (Fig. 2), where tunable strong
dipolar interactions have already been experimentally
demonstrated [42, 43]. Recent progress has led to the
development of numerous molecular species for such set-
ups [44–52]. To demonstrate that this proposal is ac-
cessible in near-term experiments, we provide a detailed,
quantitative blueprint for its implementation in the spe-
cific case of 40K87Rb [42, 45, 53–56] in an accompanying
Paper [1].
The basic geometry of the setup we envision is a three-

dimensional optical lattice generated using four pairs of
counter-propagating beams: two pairs forming the xy-
lattice and two pairs forming the A and B sub-lattices in
the z-direction (Fig. 2). We assume the molecules com-
pletely fill the lattice, and each molecule is well-localized
to its site by a deep confining potential. Rather than
having molecules physically hop between lattice sites, we
instead utilize the molecules’ rotational degrees of free-
dom to simulate hard-core bosonic excitations. At lowest
order, these rotational states are governed by the Hamil-
tonian Ĥrot = ∆Ĵ2, where Ĵ is the total angular momen-
tum operator with eigenstates |J,mJ〉. The energies of
these eigenstates are lifted by intrinsic hyperfine interac-
tions, as well as tunable extrinsic effects resulting from
applied electric and magnetic fields and incident laser
light. These extrinsic effects set the molecules’ quantiza-
tion axes and enable a direct modulation of the rotational
energy levels, and hence the two sub-lattices.
Focusing on the four lowest-energy rotational eigen-

states, we define two distinct hard-core bosonic degrees
of freedom. On the A-sub-lattice we utilize {|0A〉 =
|0, 0〉A, |1A〉 = |1, 0〉A}, while on the B-sub-lattice we
utilize {|0B〉 = |0, 0〉B, |1B〉 = |1, 1〉B}, as illustrated in
Fig. 2. These hard-core bosons interact with one another
via a dipolar interaction, which gives rise to the effective
hoppings:

tAA
r

= −CAA 3 cos2(θ)− 1

R3

tBB
r = CBB 3 cos2(θ) − 1

R3

tAB
r =

(

tBA
−r

)∗
= −CAB cos(θ) sin(θ)

R3
eiφ

(5)

where {R, θ, φ} defines the separation of molecules in
spherical polar co-ordinates, and CAA, CBB , and CAB

are positive constants. Details are provided in the com-
panion Paper [1]. This particular choice of rotational
states ensures that the inter-sub-lattice hopping tAB

r
is

induced solely by the ∆mJ = −1 term, which imme-
diately gives rise to a hopping phase ∝ eiφ [57]. This
choice, motivated by the model of Ref. [7], locks the
intra-sub-lattice components of the Hamiltonian nx,y(k)
to the momenta kx, ky. As illustrated in the accompa-
nying Paper [1], this locking naturally achieves the Hopf
requirement that all Bloch sphere pre-images link.
We further enhance the relative strength of next-

nearest neighbor hopping with a simple Floquet engineer-
ing strategy. The basic principle is that, by periodically
modulating the on-site chemical potentials µα

v
(t) inho-

mogeneously at frequencies, ~Ω, significantly higher than
the energy of the dipolar interaction, the time-averaged
behavior emulates that of a different time-independent
Hamiltonian. In this effective Hamiltonian, sites that
oscillate out-of-phase with one other will have the hop-
ping between them suppressed, while hoppings between
sites oscillating in-phase remain unaffected. Although
the Floquet modulation µα

v
(t) necessarily varies with the

lattice site v, we choose it such that effective hoppings
remain translationally-invariant. Specifically, we take
the Floquet modulation to be a checkerboard pattern in
the xy-plane, such that next-nearest-neighbor hoppings
(even rx+ ry, in-phase) are enhanced relative to nearest-
neighbour hoppings (odd rx + ry , out-of-phase).

Additionally, although the slow decay of the 1/R3

dipole-dipole interaction is helpful in establishing the
next-nearest neighbor interactions in the xy-plane that
are necessary to realize the HI, our numerical studies in-
dicate that the same interactions cause unnecessary long-
range couplings in the z-direction. To address this, we
utilize an additional, second patterning of the previous
Floquet engineering strategy, which truncates the dipo-
lar interaction to effectively nearest-neighbor in the z-
direction [58]. This patterning is guaranteed to operate
independently of the previous Floquet engineering pat-
terning if their modulation frequencies are well-separated
in scale; we verify this quantitatively in the accompany-
ing Paper [1].

By this process we are able to identify parameters in
Eq. (4) that realize the Hopf insulating phase, h = 1,
with band gaps as large as Eg & 0.26 tnn (in units of
the nearest-neighbor hopping), as well as gapless transi-
tions between the Hopf and trivial insulating phases [1].
Utilizing the ∆mJ = +1 component of the dipolar inter-
action (as opposed to the ∆mJ = −1 component) leads
instead to the phase h = −1; higher linking numbers are
in principle possible, but require an even more delicate
structure in k-space.

In Fig. 3 we show the band structure found by exact
diagonalization of the dipolar Hamiltonian [Eqs. (4) and
(5)] after applying our Floquet engineering strategy [1].
We assume periodic boundary conditions in the y- and z-
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FIG. 3. (a) Hopf invariant h (left axis) and band gap Eg

(right axis) as a function of the staggered chemical potential
µ = (µA − µB)/2, found by discretizing the Floquet engi-
neered dipolar Hamiltonian using 70 × 70 × 70 k-points, pe-
riodic boundary conditions, and setting the nearest-neighbor
inter-sublattice hopping in the xy-plane to 1. The remain-
ing plots show the energy spectrum with (100) edge termina-
tions. Black states indicate the bulk, red/blue indicate states
localized to the left/right edge respectively, and dashed lines
the bulk band gap. (b) Adiabatic edge termination over 20
sites. The conducting edge states are protected by the h = 1
topological invariant. (c) Sharp edge termination respecting
the J crystalline symmetry [Eq. (3)]. The edge states are
now protected by the symmetry. (d) Introducing terms that
break the J symmetry gaps the edge states.

directions (crystal momenta ky and kz are therefore good
quantum numbers) but a finite length in the x-direction.
We also truncate the hopping range to |r| ≤ 8 sites for nu-
merical feasibility; increasing the truncation range does
not qualitatively affect the results. Fig. 3(b) shows the
result of a smooth adiabatic termination over twenty lat-
tice sites. The bulk (black) is gapped, but the edges
(red and blue) host conducting states, which we found
to be stable for any sizable bulk gap. This is the Hopf
insulator: the adiabatic termination approximately pre-
serves translational-invariance, leading to the survival of
the two-band picture. Since the Hopf invariant is trivial
outside the system and unity inside, gapless edge states
result at the interface.

Fig. 3(c) shows the result of an abrupt termination
of the edge. Lacking adiabaticity, the band picture is
expected to break down; since the HI exists only for two-
band models, we would then not expect topologically-
protected edge states. Remarkably, however, edge states
are again present. In fact, a serendipitous choice of edge-
termination plane (100) has lead to the bulk J symmetry
surviving at the edge, and these edge states are a mani-

festation of the resulting strong Z2 invariant (which does
not require a two-band model). To see this ‘acciden-
tal’ symmetry, note that open boundary conditions are
equivalent to an infinite potential barrier Ĥedge = ρσ̂zδx,
ρ → ∞ at the system’s edge, where σ̂z acts on the
sub-lattice degrees of freedom. In momentum space,
this corresponds to real couplings between different kx,

Ĥk,k′

edge = ρσ̂zδky ,k′

y
δkz,k′

z
, which is easily seen to obey

Eq. (3). Nearly any perturbation to naive open bound-
ary conditions – for instance a small potential γ σ̂zδx−1

on the site nearest the edge – breaks the J symmetry
and gaps the edge states [Fig. 3(d)]. We predict that
this same mechanism is responsible for stabilizing the
edge states at sharp boundaries observed in previous nu-
merical studies of the HI [15, 20]. All of these edge mode
structures can be probed experimentally via molecular
gas microscopy [59, 60] by exciting individual edge spins
and observing the extent to which the excitation remains
localized on the edge [1].
Before concluding, we detail the separation of scales

required for Eqs. (4) and (5) to govern the low-energy
dynamics of the polar molecular system. First, we work
in the natural experimental regime where the dipolar in-
teraction strength is significantly smaller than the energy
splittings between the rotational states within the J = 1
manifold. The external fields should be tuned such that
the splitting between the |0A〉 and |1A〉 states is reso-
nant with the |0B〉 and |1B〉 states, and far detuned from
all other rotational transitions. Conservation of energy
then dictates that the dipolar interaction can only induce
transitions within our prescribed hard-core bosonic dou-
blets. Details on how this level scheme can be precisely
realized in the specific case of polar molecular quantum
simulation based upon 40K87Rb can be found in the ac-
companying Paper [1]. Here, we note only that the ori-
entation of the spins is fixed via applied fields oriented
in the z-direction, and that the degeneracy between the
|1, 0〉 and |1, 1〉 states, as well as the sub-lattice symme-
try between the A and B planes, is broken by using dif-

ferent intensities of light to form each sub-lattice. Our
scheme naturally leads to a separation of energy scales
t ≪ δ ≪ ∆, where t is the dipolar interaction strength
(∼100 Hz), δ is the splitting within the J = 1 manifold
(∼5 kHz), and ∆ is the splitting between the J = 0 and
J = 1 sectors (∼2 GHz).
There has recently been a burst of theoretical inter-

est in Hopf insulators and their possible extensions, in-
cluding non-hermitian generalizations [30], the survival of
topology under quantum quenches [31], crystal symme-
tries [18, 27], and generalizations to periodically-driven
Floquet systems [28, 29]. These ideas motivate the pos-
sibility of experimentally realizing the Hopf insulator
phase, which would allow one to test the above predic-
tions, and, more tantalizingly, could probe regimes of
Hopf insulating physics that are much harder for the-
ory to handle. For instance, it remains an open question
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as to whether any interacting extension of the Hopf in-
sulator exists. The protocol outlined here and detailed
further in the accompanying Paper [1] makes use of the
high tunability and intricate real- and momentum-space
structures afforded by recent advances in the manipu-
lation of interacting dipolar molecules [61, 62]. Looking
forward, the same approach suggests many promising av-
enues for realizing other exotic states presently residing
at the forefront of theory [63–68].
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[41] S. de Léséleuc, V. Lienhard, P. Scholl, D. Barredo,
S. Weber, N. Lang, H. P. Büchler, T. Lahaye, and
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J. M. Hutson, Physical Review A 78, 033434 (2008).

[57] Intriguingly, we note that this exact same hopping in two-
dimensions can give rise to Chern insulating physics, both
in the prototypical Qi-Wu-Zhang model for the Chern
insulator [63] as well as in positionally disordered sys-
tems [64].

[58] T. E. Lee, Physical Review A 94, 040701 (2016).
[59] G. E. Marti, R. B. Hutson, A. Goban, S. L. Campbell,

N. Poli, and J. Ye, Physical Review Letters 120, 103201
(2018).

[60] J. P. Covey, L. De Marco, Ó. L. Acevedo, A. M. Rey,
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