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The combination of fast propagation speeds and highly localized nature has hindered the direct
observation of the evolution of shock waves at the molecular scale. To address this limitation,
an experimental system is designed by tuning a one-dimensional magnetic lattice to evolve benign
wave forms into shock waves at observable spatial and temporal scales, thus serving as a ‘magnifying
glass’ to illuminate shock processes. An accompanying analysis confirms that the formation of strong
shocks is fully captured. The exhibited lack of a steady state induced by indefinite expansion of a
disordered transition zone points to the absence of local thermodynamic equilibrium, and resurfaces
lingering questions on the validity of continuum assumptions in presence of strong shocks.

The propagation of shock waves in solids has received
enormous attention in the last several decades [1–4]. Ex-
periments, molecular dynamic simulations, and contin-
uum mechanics modeling, have been performed to in-
vestigate shock waves [5–8] and their interactions with
complex material response such as plasticity [9], damage
[10], dislocation and twinning [11–13], and phase trans-
formation [14–16]. However, the microscopic mechanisms
behind their formation are yet to be fully understood.
Since the first development of modern shock wave the-

ory, it is widely accepted that, at the continuum scale,
shock waves can be modeled as steadily propagating dis-
continuities within a medium [17]. While it is acknowl-
edged that, in a physical system, even vanishing levels of
viscosity or rate-sensitivity promote a continuous wave-
form, the thickness of this wave is thought to be steady
and infinitesimal compared to the scale of the contin-
uum process [18]. Hence, the main features of shock
wave propagation can be captured using one-dimensional
rate-independent theories [19]. However, over the years,
there have been indications of situations in which these
assumptions breakdown [20–24]. Since the macroscopic
response of a solid is intrinsically linked to its response
at the microscopic scale, it is plausible that in these situ-
ations additional information on the microscopic process
occurring within the narrow region of the shock is needed
to explain the continuum level observations. However, to
the best of our knowledge, the evolution and propagation
of shock waves at the molecular scale has only been cap-
tured via numerical simulations [24–26]. Whereas their
direct observation can serve to better elucidate shock
wave phenomena and to distinguish between artifacts of
numerical modeling and the actual physics.
Packed granular chains serve as an example discrete

system, which has been extensively studied due to its
ability to generate strongly nonlinear waves, including
shock waves [27], and Nesterenko solitary waves [28]. In
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these chains the Hertzian contact between particles leads
to their deformation in a highly nonlinear process, which
is also responsible for significant energy dissipation. The
response of these systems is thus not directly comparable
to molecular scale phenomena.
To mimic the molecular scale response, we develop a

desktop-scale experimental realization of shock wave evo-
lution in a tunable magnetic lattice. We demonstrate
the propagation of strong shocks and capture their en-
tire evolution from a benign wave. Our validated numer-
ical model provides a comprehensive understanding of the
observed phenomena and its sensitivity to both external
damping and the imposed waveform. Moreover, it con-
firms that this system supports the propagation of quasi-
steady strong shocks, in which the shock front exhibits
‘soliton like’ features propagating at constant velocity
and strength, while the particle velocity profile reaches a
steady oscillatory state. It is shown that for strong shocks
a highly disordered transition regime emerges, from the
shock front to the steady oscillatory state, and expands
indefinitely. Thus, revealing an unsteady feature of shock
waves that nucleates at the molecular scale and can grow
to the macroscopic scale.
To realize shock wave evolution that is comparable to

molecular-scale process, but in a desktop-scale system,
the experimental setup requires a tunable lattice with
minimal levels of dissipation. Provided a finite imaging
window, the system should evolve a benign impact into
a shock within a prescribed propagation distance, and at
sufficiently slow velocities. The former can be achieved
by particles with highly nonlinear repelling forces (i.e.
strongly convex force-separation curve), and the latter
by tuning the stiffness-to-mass ratio (i.e. the ratio be-
tween the local slope of the force-separation curve and
the particle mass). To meet these requirements, we take
advantage of the highly nonlinear repelling nature of rare-
earth magnets and construct a lattice of 21 particles with
outer diameter of 6.35 mm, length of 6.35 mm, and mass
of m = 1.084 g. As shown in Fig. 1(a). The mag-
nets are free to slide on a non-magnetic, minimal fric-
tion, supporting cylindrical rod. The first magnet (on
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the left) is attached to two tilted pre-stretched rubber
bands through a plastic connector, while the last mag-
net is fixed. The magnets are initially equi-spaced and
pre-loaded to tune the repulsive force (or equivalently
the stiffness) before impact. The imparted wave is gen-
erated by releasing the first magnet, thus allowing the
rubber-bands to contract and initiate the propagation
(see Fig. 1(b) and Movie S1). The dynamic process is
recorded by a high-speed camera (Photron SA5, 1280 x
800 pixels) at 8 kHz, allowing the measurement of mag-
net displacement, velocity, and acceleration via digital
image correlation (DIC) method. Using this setup the
impact strengths and lattice stiffness are separately tuned
by varying the pre-stretch of the rubber bands, or the ini-
tial separation between the magnets, respectively. More
details of the experimental system are given in Section
S1 of the Supplementary Material [29].

To show that this system is capable of evolving an or-
dinary waveform into a shock, within the allocated prop-
agation distance, we examine its response to an impact.
The magnet trajectories are shown in Fig. 1(b) for the
case with maximum impact velocity VI = 2.81 m/s and
with an initial magnet separation of r0 = 12 mm. As
indicated by the red arrow, the evolution of the magnet
displacements shows a wave propagating from the im-
pacted end, into the lattice at VP = 6.42 m/s. Then,
upon arrival at the last magnet, a reflection wave propa-
gates back. It is seen from the displacement profiles that
although the imparted wave form is smooth; its propa-
gation induces sharp oscillations in magnet particle dis-
placement curves, indicating rapid changes in magnet ve-
locities.

If a shock forms, the wave profile is expected to
steepen. By examining the velocity profiles of different
magnet particles in Fig. 1(c), it is clearly observed that
in our system significant steepening occurs and is accom-
panied by oscillations that become more violent as propa-
gation proceeds. In particular, notice the decreasing rise
times (i.e. the duration from zero velocity to first peak
velocity), which reduce from 23.9 ms, for the first par-
ticle (n = 1), to 4.9 ms, for n = 6. This result clearly
demonstrates the realization of a longitudinal shock wave
and its evolution from a simple wave. Moreover, the vi-
olent oscillations of increasing amplitude, in what seems
to be a highly disordered process, are indicative of strong
shocks.

To better understand the observed shock evolution, we
numerically model the system as a chain of particles con-
nected by nonlinear springs. In the following analysis,
we only consider the interaction between first neighbor-
ing magnets. Although some influence may arise from the
magnetic field of the non-nearest particles, it is a second
order effect (see Section S3 in the Supplementary Mate-
rial [29]). Additionally, we neglect magnet rotations, and
the length of the magnet is not considered in the calcu-
lation of propagation velocity. Accordingly, the equation

of motion for the nth magnet reads

m
d2un

dt2
= Fn−1 − Fn − fn, (1)

where un denotes the particle displacement, and Fn, fn
are the repulsive and frictional forces, respectively. In
particular, based on experimental measurement of the
force-dispacement curve (Fig. 2a), the repulsive force is
approximated using the formula F = K/(r + b)q, where
r is the separation between two neighbor particles, and
the coefficient values are K = 413.8 N·mm3, b = 3.917
mm, q = 3. A Coulomb model captures the influence
of friction between the rod and the magnets via the for-
mula fn = µ(mg + p(Fn−1 + Fn)), where the coefficients
µ = 0.285 and p = 0.012 are experimentally measured
(see Supplementary Material S4 [29]), and g is the grav-
itational acceleration. The measured motion of the im-
pacting magnet, u1(t), is given as a boundary condition
at one end, while at the other end we impose u21(t) = 0.
The equations of motions are numerically solved using a
finite difference method [30]. Numerical results obtained
using this model are compared with experimental curves
for the 2nd and 8th magnets in Figs. 2(b-e), and show
excellent agreement for the velocity profiles. The accel-
eration profiles are also well captured by the simulation.
The discrepancy in peak accelerations can be explained
by the limited image resolution (∼ 20 pixels per ring
magnet particle length), which is insufficient to capture
sharp changes in acceleration (see Section S2 of the Sup-
plementary material [29]).
Next, we use our calibrated model to investigate the

long-time behavior of strong shocks. For simplicity, we
consider a long lattice subjected to a constant impactor
velocity (a long lattice is used to avoid wave reflections).
Fig. 3(a) shows a typical velocity profile obtained for
an impactor velocity of VI = 2 m/s, in absence of fric-
tion. Upon arrival of the shock front, the particle veloc-
ity is shown to rapidly increase to 3.87 m/s, followed by
strong oscillations with a decaying amplitude. Unlike a
linear system, for which the vibration amplitude decays
completely (see Supplementary Material S5 and S9 [29]),
a stable finite-amplitude oscillation about the impactor
velocity is eventually attained. Note that this motion is
non-harmonic due to the nonlinearity of the system. Ex-
amining the corresponding propagation velocity of the
shock front in Fig. 3(b) we show that it gradually ap-
proaches a constant value of VP = 3.92 m/s. It is notable
that this stabilized propagation velocity is significantly
larger than the impactor velocity and the linear propa-
gation velocity V0 = 1.62 m/s [31]. If frictional effects
are included, a gradual decay of the propagation velocity
is expected beyond a peak value (see Section S6 in the
Supplementary Material [29]). Nonetheless, once devel-
oped, the early time propagation velocity (i.e. for the
first ∼ 20 magnets) is comparable to the constant propa-
gation velocity in the frictionless system. Fig. 3(c) shows
that both the first peak velocity and the first peak accel-
eration increase with increasing particle number, which
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is an intrinsic feature of strong shock waves. Eventually,
the competition between nonlinearity and dispersion in
the system results in saturation of the first peak velocity
and peak acceleration. In particular, the saturated first
peak velocity is 2VI .
Further, to understand the transition from the wave

front to the stabilized oscillatory state, Figs. 3(d,e)
present the peak velocity and the corresponding oscilla-
tion frequency for different particle numbers as a function
of time. We find that both the amplitude and the pe-
riod decrease with time; moreover, after a rapid increase
in stabilized oscillation amplitude (from the 1st magnet
to the 5th magnet), the following particles arrive at the
same oscillatory state (same amplitude and same period).
Nonetheless it is observed that the time of transitioning
from peak velocity to the stabilized state is longer for the
larger particle numbers, resulting in the highly disordered
transition zone that expands indefinitely as the shock
front penetrates deeper into the undisturbed lattice (see
Movie S2). Analogous to the interpretation of molecular
scale response, the finite amplitude steady oscillation in
the wake of a shock is consistent with an increase in tem-
perature [32], whereas the disordered transition region
appears to be out of thermodynamic equilibrium and its
growth can be attributed to increasing entropy.
To further understand the range of shock wave re-

sponse realized in our experiments, we explore the ef-
fect of the impactor velocity on the propagation veloc-
ity of the quasi-steady shock wave in Fig. 4(a). The
nearly linear dependence observed in both experimental
and numerical results resembles the reported experimen-
tal findings of shock Hugoniot data in metallic materials
[33] and molecular simulations of shock waves [34]. The
agreement between theory and experiments is shown with
slight deviations attributed primarily to effects of fric-
tion, and the precise form of the imparted wave that are
neglected in the simulation (see Supplementary Material
S6 and S7 [29]). While these curves, as well as the cor-
responding oscillation frequency (Fig. 4b), do not reveal
information on the shock strength, we examine in Fig.
4(c) the kinetic energy associated with the steady state
oscillation. Quite noticeably, the increase in oscillation
energy becomes pronounced beyond a critical impactor
velocity, V ∗, which is smaller than the linear propagation
velocity (i.e. V ∗ < V0). This threshold velocity repre-
sents the transition into the strong shock regime, which
is characterized by a dramatic increase in energetic con-
sumption.
In absence of a unified quantitative definition of strong

shocks, which are typically distinguished from weak and
moderate shocks by virtue of the very large magnitude
jump in field variables that they impose [35], here we

propose a quantitative definition of strong shocks based
on the oscillation energy ratio, which is directly linked
to the level of energy dissipation. We identify the crit-
ical impact velocity V ∗ for the onset of a strong shock
as velocity at which the curvature of the oscillation en-
ergy ratio curve changes sign, namely d2η/dV 2

I = 0 (see
inset in Fig.4(d)). Accordingly, strong shocks occur for
VI > V ∗, and moderate shocks occur in the finite range
VI ∈ (0, V ∗). A weak shock, appears at the limit VI → 0
[36]. From this definition it is clear that strong shocks are
observed in our experiments (see Fig.4(a)). Moreover,
despite the 8 orders of magnitude difference in length-
scale, the desktop-scale magnet lattice system preserves
the key quantitative features of shock wave propagation
in an analogous atomic system (as compared to a cop-
per atomic lattice in Section S8 of the Supplementary
Material [29]).
In Fig. 4(d) we further investigate this critical thresh-

old by examining the influence of the stiffening law, or
in particular, the power q. We observe that a system
with increased stiffening can be driven beyond the criti-
cal threshold by lower impactor velocities.
In conclusion, we have shown that the desktop-scale

experimental system presented here allows for complete
spatio-temporal capture of the evolution of strong shocks
from benign imparted wave forms. This is facilitated
by taking advantage of the highly nonlinear repelling
force between neighboring rare-earth magnets in a tune-
able one-dimensional lattice. Comprehensive investiga-
tion of the lattice response uncovers behaviors of strong
shocks, that agree with predictions from Molecular Dy-
namic (MD) simulations. Hence, this work gives rise to a
new avenue for investigation of shock wave phenomena at
the microscopic scale. Moreover, through this analysis,
we observe the formation of a highly disordered transition
region in the wake of strong shocks. This region nucleates
at the particle scale, but continues to grow indefinitely.
Observation of this phenomena at the macro-scale, raises
questions on the validity of continuum assumptions in
the presence of strong shocks. Future work can take ad-
vantage of this system to expand beyond uniaxial prop-
agation and can include additional physical effects, such
as structure defects, thermal vibrations, and dissipation.
Moreover, it is worth mentioning that the current design
could also be modified to explore other nonlinear wave
phenomena, such as solitons [37–39], elastic bandgaps
[40], and nonreciprocal waves [41–43].
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FIG. 4. Dependence of the stabilized shock response on im-
pact velocity. Curves represent numerical solutions. Ex-
perimental datum are shown as colored markers with error
bars. (a) Shock wave propagation velocity. (b) Stabilized os-
cillation frequency, f . (c) Oscillation energy ratio, η. (d)
Critical velocity. Here f0 represents the linear oscillation
frequency, defined as f0 = 1/π

√

−(1/m)dF (r)/dr|r=r0
, and

η = 1/T
∫

t0+T

t0
(V (t)/VI − 1)2 dt, where T = 1/f . If the oscil-

lation is harmonic, η = 0.5.


