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Dipole-dipole interactions lead to frequency shifts that are expected to limit the performance of
next-generation atomic clocks. In this work, we compute dipolar frequency shifts accounting for
the intrinsic atomic multilevel structure in standard Ramsey spectroscopy. When interrogating the
transitions featuring the smallest Clebsch-Gordan coefficients, we find that a simplified two-level
treatment becomes inappropriate, even in the presence of large Zeeman shifts. For these cases,
we show a net suppression of dipolar frequency shifts and the emergence of dominant non-classical
effects for experimentally relevant parameters. Our findings are pertinent to current generations of
optical lattice and optical tweezer clocks, opening a way to further increase their current accuracy,
and thus their potential to probe fundamental and many-body physics.

Introduction.—Current optical atomic clocks have
reached unprecedented precision and accuracy [1–10],
making them cutting-edge platforms for many techno-
logical applications and for the exploration of many-
body [11–20] and fundamental physics [21–25]. The re-
duction of noise in atomic detection and laser stabiliza-
tion in such systems has allowed measurements of the
atomic transition with submillihertz resolution [6, 26, 27].
At this point, dipole-dipole interactions between the
atoms are expected to play an important role, in the
form of induced density dependent shifts in the mea-
sured atomic transition frequency. Simple two-level mod-
els have been applied to quantitatively determine these
dipolar shifts [28–34], but, in reality, atoms have a com-
plex internal multilevel structure which has to be taken
into account. This calls for a deeper understanding of the
role of multiple internal levels in dipolar systems [35–39],
which is also relevant for applications in quantum simu-
lators [11, 17, 18, 40] and quantum computing [41–43].

In this work, we investigate dipolar frequency shifts
experienced by arrays of multilevel atoms in a Ramsey
spectroscopy protocol. In general, the strength of dipo-
lar interactions is set by the magnitude of the transi-
tion’s dipole moment, which is proportional to a Clebsch-
Gordan coefficient (CGC). However, in multilevel atoms
the dependence of the dipolar shift on the choice of tran-
sition is more complex. This is because the CGC between
two specific states not only sets the strength of the dipole
couplings, but also affects the coupling strength to nearby
levels. Specifically, transitions with low (high) CGC fea-
ture a stronger (weaker) decay to and interactions with
their neighbouring states.

Our results show that the magnitude of the dipolar
frequency shift is mainly controlled by the CGC of the
interrogated levels. Therefore, one can strongly suppress
dipolar shifts by selectively choosing the levels with the
smallest CGC. We also find that interactions with nearby
levels can significantly modify the shift. Specifically, we
show that a full multilevel calculation is necessary when
the CGC of the interrogated transition is small, whereas

simplified two-level models are accurate when the CGC is
large. Surprisingly, the relevance of the multilevel struc-
ture holds even in the presence of strong magnetic fields,
under which the large Zeeman shifts suppress exchange
with nearby levels. Moreover, we find that the suppres-
sion of the shift from small CGC leads to an increased rel-
ative importance of beyond-mean-field effects for specific
experimentally relevant array geometries and laser wave
vector configurations. In short, our work offers a simple
way for current experiments to reduce dipolar shifts by
almost two orders of magnitude, while at the same time
drawing theorists’ attention to the important yet largely
neglected role of internal levels in many-body dipolar sys-
tems.

Multilevel coupled dipole model.—We consider a sys-
tem of N point-like atoms pinned in a deep optical lat-
tice or a tweezer array with unity occupation, always in
their motional ground state. We assume that each atom
i has a multilevel internal structure of ground and ex-
cited manifolds, g and e, with respective total angular
momenta Fg and Fe. There are thus (2Fa + 1) hyper-
fine states |am〉i ≡ |a, Fa,m〉i with angular momentum
projections m ∈ [−Fa, Fa], for each manifold a ∈ {g, e}.
The photon-mediated interaction between the atoms oc-
curs via both coherent exchange and incoherent decay of
excitations [see Fig. 1(a)], and the dipole dynamics can
be modelled by a multilevel coupled dipole master equa-

tion [38, 39, 44–46] ˙̂ρ = −i
[
Ĥ, ρ̂(t)

]
+ L(ρ̂) (~ = 1),

where

Ĥ =−
∑
i,j

∆ij
gmen,gm′en′ σ̂

engm
i σ̂

gm′en′
j , (1)

L(ρ̂) =
∑
i,j

Γijgmen,gm′en′

(
2 σ̂

gm′en′
j ρ̂ σ̂engmi

−
{
σ̂engmi σ̂

gm′en′
j , ρ̂

})
, (2)

and σ̂ambni = |am〉i〈bn|i. For a two-level atom, these
operators become the usual raising/lowering Pauli opera-
tors. For clarity, we have used Einstein notation for levels
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FIG. 1. (a) Ramsey spectroscopy for multilevel atoms with in-
ternal level structure Fg = Fe = 9/2 in an optical lattice. The
atoms are prepared in a superposition of a particular ground
and excited pair of states gα and eβ by a laser with wave
vector k0, polarization ε, and pulse area θ. During a dark
time t, the atoms interact via coherent and incoherent dipole-
dipole processes, ∆ij and Γij , respectively. This induces a
frequency shift δgαeβ ∼ |Ceβgα |2 controlled by the CGC of the
interrogated transition. The schematic form of the dipolar
shift corresponding to interrogating π-polarized transitions
(colored according to their CGC) is depicted here. CGCs
squared for different σ± and π-transitions are displayed. (b)
Shift from the Ramsey protocol addressing three different π-
polarized transitions for a 3D lattice of spacing d = 7λ/12
with N = 103 atoms and θ = π/2.

in the equations above (i.e., repeated indices m,m′, n, or
n′ are summed). The terms proportional to ∆ij

gmen,gm′en′

and Γijgmen,gm′en′ characterize the elastic and dissipative
components of the dipolar interactions and their ampli-
tudes relate to the free-space electromagnetic Green’s
tensor Gij ≡ G(ri − rj) of an oscillating point dipole
at position rj according to

∆ij
gmen,gm′en′ ≡ Cengme∗n−m · Re {Gij} · Cen′

gm′en′−m′ ,

Γijgmen,gm′en′ ≡ Cengme∗n−m · Im {Gij} · Cen′
gm′en′−m′ ,

(3)

where Cengm ≡ 〈Fg,m; 1, n − m|Fe, n〉 is the CGC
of the transition gm ↔ en with polarization vector
en−m. We define the spherical basis e0 = ẑ, e±1 =
∓(x̂ ± iŷ)/

√
2. The vacuum Green’s tensor is given

by G(r) = (3Γ/4)(eik0r/(k0r)
3)
[ (
k20r

2 + ik0r − 1
)
1 −(

k20r
2 + i3k0r − 3

)
r̂ ⊗ r̂

]
, where r̂ = r/r, r = |r|.

Γ = |deg|2 k30/ [3π~ε0(2Fe + 1)] is the total spontaneous
decay rate, deg the radial dipole matrix element, k0 =
ω0/c = 2π/λ the atomic transition wavenumber and ε0
the vacuum permittivity. For i = j, the coherent in-
teraction coefficient is ∆ii

gmen,gm′en′ = 0 and the incoher-
ent term reduces to the single-particle spontaneous decay
term Γiigmen,gm′en′ = δn−m,n′−m′CengmC

en′
gm′ Γ/2. Note that

the total decay rate Γen ≡ 2
∑
m Γiigmen,gmen = Γ is the

same for any excited state en because of the sum rule∑
m |Cengm |2 = 1.
Ramsey spectroscopy with multilevel atoms.—We in-

vestigate the effect of the atomic multilevel nature on
the following Ramsey spectroscopy protocol assuming,

at first, zero external magnetic field. We start by se-
lecting a pair of states gα and eβ , driving the transition
between them with a resonant laser of pulse area θ, wave
vector k0, and polarization ε. The laser drive is assumed
to be much stronger than the interaction energies, such
that it creates an uncorrelated coherent superposition

|Ψgα,eβ 〉 =
⊗

j

(
cos(θ/2) |gα〉j + eik0·rj sin(θ/2) |eβ〉j

)
.

We hereafter consider θ = π/2, as generally used in
clock experiments, or θ = π/4, as the latter can lead
to more pronounced and thus easily observable dipo-
lar shifts. Then, the system evolves freely for a dark
time t. By analogy with two-level systems, we define
〈Ŝy〉 ≡ Im{〈Ŝeβgα〉} and 〈Ŝx〉 ≡ Re{〈Ŝeβgα〉}, where
the multilevel collective spin operator (under the ap-
propriate gauge transformation that removes the phase
k0 · rj imprinted by the laser on atom j) reads Ŝeβgα =∑
j e
ik0·rj σ̂

eβgα
j . The collective vector precesses around

the z-direction of the Bloch sphere and accumulates an
azimuthal phase as a result of the dipole-dipole interac-
tions. The corresponding time-dependent frequency shift
is defined as

δgαeβ (t) ≡ 1

2πt
arctan

〈Ŝy〉(t)
〈Ŝx〉(t)

. (4)

Dipolar interactions also lead to a reduction of the con-

trast Cgαeβ (t) ≡ 1
N

√
〈Ŝx〉2(t) + 〈Ŝy〉2(t).

We employ three different types of approximations to
investigate this multilevel many-body system:

i) A short-time perturbative expansion, valid for t� Γ−1

that we use to compute the dipolar frequency shift at first
order in time, i.e., δgαeβ (t) ≈ δgαeβ0 + δ

gαeβ
1 t;

ii) A mean-field (MF) approximation, which neglects
quantum correlations, i.e. 〈σ̂abi σ̂cdj 6=i〉 ≈ 〈σ̂abi 〉〈σ̂cdj 6=i〉;
iii) A second-order cumulant expansion, which factorizes
three-point (and higher-order) correlations in terms of
one- and two-point functions [47].

In the MF and cumulant simulations we further assume
that only gα, eβ , and their adjacent levels (i.e., gα±1 and
eβ±1) play a relevant role in the dynamics, as demon-
strated in [47].

Short-time perturbative expansion.—To gain physical
intuition of the problem, we analytically derive short-
time expressions for the shift. The zero-order shift reads

δ
gαeβ
0 = −cos θ

2πN

∑
i,j 6=i

U jigαeβ , (5)

where we have defined U jigαeβ ≡ Γjigαeβ ,gαeβ sin(k0 · rij) +

∆ji
gαeβ ,gαeβ

cos(k0 · rij). Physically, the term U jigαeβ de-
scribes the classical interaction energy between two os-
cillating dipoles at positions ri and rj [28], where both
coherent and incoherent processes contribute. At this
order, only the transition between gα and eβ , directly
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driven by the pulse, is involved and the MF treatment is
exact. Furthermore, δ

gαeβ
0 is proportional to |Ceβgα |2 [see

Eq. (3)], so that the multilevel system differs from two-
level atoms [28] via a renormalization by the CGC. Note
that the zero-order shift vanishes for a θ = π/2 pulse,
as the dipole-dipole induced precession of the collective
Bloch vector requires a non-zero 〈Ŝz〉 component.

The next-order correction does involve other levels and
is given by

δ
gαeβ
1 = − 1

2πN

∑
i,j 6=i

{
U jigαeβ Γ̃gαeβ (θ)

+
∑
p

( ∑
k 6=i,j

W kji
p (θ) +

∑
p′

Qjip,p′ (θ)

)}
,

(6)

with p and p′ referring to polarizations [47].
The first contribution in Eq. (6) is similar to the zero-

order shift. The cos θ, however, is replaced by Γ̃gαeβ (θ),
which contains a collective contribution and an explicit
dependence on the CGC of the transition interrogated.
The W kji

p (θ) are two-photon coherent and incoherent
processes between three different atoms, where one of the
contributing transitions is always gα ↔ eβ . Thus, these

terms are proportional to at least |Ceβgα |2. The Qjip,p′(θ)
terms correspond to processes involving two atoms only,
yet not necessarily from the gα ↔ eβ transition. As two-
photon processes, they nevertheless contain the product
of four CGCs and, as we shall discuss later, they carry
beyond-mean-field contributions.

Suppression of the frequency shift.—Although our con-
clusions are valid for generic multilevel systems, in this
work we focus our analysis on the case of 87Sr, given
its metrological relevance for atomic clocks [1, 5, 11, 17].
More specifically, we assume multilevel atoms with Fg =
Fe = 9/2, organized in a 2D or 3D array with magic-
wavelength spacing d = 7λ/12 [48], see Fig. 1(a).
For simplicity, we will hereafter consider addressing π-
polarized transitions (i.e., α = β), where the quantization
axis is defined by the laser polarization ε. For this sys-
tem it is important to know that the CGC for π-polarized
transitions scales as Cemgm ∝ m, i.e., it is largest for ±9/2
and smallest for ±1/2.

A direct consequence of the zero- and first-order terms’
dependence on the CGC is that the shift can be strongly
suppressed by choosing the appropriate transition, i.e.,
the one with the lowest CGC. This effect is illustrated
in Fig. 1(b), where the dark-time evolution of the shift
in a 3D array is monitored for three different transi-
tions, α = −9/2,−5/2, and −1/2. As a consequence
of the scaling with the CGC, the shift is reduced by a
factor 81 for the α = −1/2 transition, as compared to
α = −9/2. Note that the suppression remains valid even
at longer times beyond the regime of validity of the short-
time expansion. The decay of the contrast Cgαeβ (t) also
shows a scaling with the CGC, which leads to suppressed
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FIG. 2. Local frequency shifts δi for a 3D lattice with N = 103

atoms, interrogated by a laser with a pulse area of π/2 and a
dark time of Γt = 0.3 as shown in the configuration labeled
by a triangle for (a) a two-level system and transitions (b)
g−9/2 ↔ e−9/2, (c) g−1/2 ↔ e−1/2, and (d) g−1/2 ↔ e−1/2 in
the presence of a large magnetic field B. The shift is calcu-
lated using Eq. (6) and is averaged along ε, with the resulting
contribution at positions (xi, yi). Shifts are rescaled by the
corresponding CGC squared and by an overall 10−2 factor.
(e) Comparing the global shift of the multilevel model for
transitions α = −9/2 (top) and α = −1/2 (bottom) (full and
dotted lines, for zero and large magnetic fields, respectively)
to a two-level model (dashed lines). (f) Absolute value of
the difference between maximum and minimum of the local
shift (δmax

i and δmin
i ) versus magnitude of the global shift |δ|

for different geometries with N ∼ 103. Symbols represent
configurations shown in the legend. The light-blue symbols
correspond to the large-|B| limit for α = −1/2.

sub/superradiance effects for α = −1/2 [47]. Further-
more, the excellent agreement in Fig. 1(b) between the
short-time expressions (dotted lines) and the MF dynam-
ics (full lines) until Γt ≈ 0.2 shows that, on these time
scales, the beyond-MF terms [Q in Eq. (6)] do not con-
tribute substantially.

Further insight is provided by the local dipolar shift
patterns δ

gαeβ
i ≡ 1

2πt arctan(〈ŝyi 〉/〈ŝxi 〉) [single-particle
counterpart of Eq. (4)], which directly encode the
anisotropic and geometry-dependent character of dipo-
lar interactions. Local density shifts are amenable for
experimental observation via imaging spectroscopy [27],
since they are insensitive to laser drifts which are com-
mon for all atoms in the array. In Fig. 2(a-d), we present
the local shifts obtained with π/2 pulses on 3D lattices
with N = 103 for α = −9/2 and −1/2.

The magnitude of the shifts shows again an overall
suppression with |Ceαgα |2, which we emphasize by rescal-
ing the plots as δi/(Γ|Ceαgα |210−2). However, the dipolar
patterns of the −9/2 and −1/2 transitions feature dis-
tinguishable spatial profiles: the different dispositions of
maxima and minima of the local shifts go beyond the
mere |Ceαgα |2 scaling.

The local shifts of the −1/2 transition reveal a more
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pronounced sensitivity to the multilevel structure com-
pared to the −9/2 case, as confirmed by simulations of
pure two-level atoms, which show patterns that are al-
most indistinguishable from the −9/2 case. Furthermore,
a scaling with N also confirms this conclusion for the
global shift, as shown in Fig. 2(e). This is because the
−1/2 π-transition has a small CGC compared to the ad-
jacent σ±-transitions, whereas for the −9/2 π-transition
the opposite is true, see Fig. 1(a). Therefore, nearby
levels play a more important role in the −1/2 case.

Figure 2(f) also reveals that an appropriate choice of
the geometry and laser wave vector allows one to further
reduce the shift, as previously observed for two-level sys-
tems [28, 31, 34]. Our main finding in this regard is that
the dipolar shift saturates for large N in all cases shown,
except in 2D when the laser polarization is perpendicu-
lar to the atomic plane, see Figs. 3(a) and (b). This is
because in the latter configuration, all the dipoles align
perpendicular to the plane and the corresponding dipolar
interactions depend only on the distance between atoms,
and not on their orientation [47].

Role of magnetic fields.—Optical clock experiments
are typically conducted under a bias magnetic field B
(along the quantization axis) that allows to spectroscop-
ically address specific transitions. This leads to a Zeeman
shift of order µ0|B| (with µ0 ≡ µB/~ and µB the Bohr
magneton) for the gα ↔ eα transition considered, which
trivially adds to the zero-order expression of Eq. (5) and
can be removed in the appropriate rotating frame. How-
ever, magnetic fields can non-trivially affect dipolar shifts
at higher orders.

If the magnetic field is weak (i.e., µ0|B| . Γ), we find
the above results on the dipolar shift are only weakly
affected at late times. This is because the first-order
correction, Eq. (6), turns out to be independent of the
magnetic field [47]. In contrast, strong magnetic fields
(µ0|B| � Γ) can significantly alter the short-time behav-
ior of the shift. Large Zeeman shifts effectively suppress
exchange interactions involving off-resonant transitions.
In other words, ∆ij

gmen,gm′en′ = Γijgmen,gm′en′ = 0 unless
m = m′ and n = n′ (assuming different g-factors for the
ground and excited manifolds). This leads to an effec-
tive 4-level (or 3-level) system composed of eα, gα, and
the ground levels adjacent to it. In this limit, almost
all terms in the first-order expression, Eq. (6), involving
transitions different from gα ↔ eα are suppressed, except
for terms with p = p′ appearing in Qjip,p′ [47].

Consistently with the discussion above, we find that
the modification of the shift strongly depends on the
CGC of the addressed transition. For −9/2 neither the
global nor the local shifts are substantially altered [47]
[see, e.g., Figs. 2(e) and 3(a)]. In contrast, for −1/2 both
the local shift pattern [cf. Figs. 2(b) and (c)] as well as the
global shift [Figs. 2(e) and 3(b)] are significantly modified
under a large |B|. Despite this, the global shift remains
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FIG. 3. Global shift for 2D arrays of atoms with laser config-
uration shown in (c). (a,b) N -scaling of the total shift from
the short-time expansion (red/blue) and beyond-MF contri-
bution (black) at Γt = 0.3: (a) shows the g−9/2 ↔ e−9/2 tran-
sition with π/2, and (b) the g−1/2 ↔ e−1/2 transition with
π/4. The dotted, light-colored lines correspond to the large-
magnetic-field limit. The inset of (a) shows the zoomed-in
region where beyond-MF corrections become comparable to
the total shift. (c,d) Dipolar shift δ as a function of the dark
time: cumulant (full lines) against MF (dashed lines) approx-
imations for the g−9/2 ↔ e−9/2 (red), g−5/2 ↔ e−5/2 (yellow),
and g−1/2 ↔ e−1/2 (blue) transitions. Simulations performed

for N = 82 atoms and using (c) a π/2 and (d) π/4 pulse.

suppressed by the small CGC as found for small |B|.
Beyond-mean-field effects.—An important conse-

quence of the strong shift suppression is that higher-
order, non-classical terms can have a contribution
comparable to the lowest-order, semi-classical ones. The
zero-order shift, Eq. (5), is perfectly described by the MF
approach, yet the Q terms of the first-order, Eq. (6), are
not. More specifically, the difference between the shift
given by the exact, first-order perturbative equations
and the MF approximation reads

δ
gαeβ
BMF ≡

1

2πN

∑
i,j 6=i

∑
p

{∑
p′

Qjip,p′ (θ)−W ji
MF,p (θ)

}
,

(7)
where W ji

MF,p (θ) is a MF-only term related to W kji from
Eq. (6) [47]. In general, we find beyond-MF effects to be
relevant in cases (but not in every case) where either the
system is small or when a transition with small CGC is
addressed.

Figure 3(c) shows the effect of beyond-MF terms for
a small 82 lattice, driven by a π/2 pulse with a polar-
ization orthogonal to it. There, the dynamics predicted
by MF (dashed lines) substantially deviates from the cu-
mulant result (solid lines) for all transitions considered.
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The relevance of the beyond-MF term in these cases lies
in the comparably small magnitude of the MF part. Fig-
ure 3(a) shows that for this system size the total shift
happens to be close to zero. On the contrary, at large
N , when the MF contributions are no longer suppressed,
the beyond-MF term becomes negligible.

Although beyond-MF corrections do not scale up with
N , we find cases where they can be relevant even for
large systems because of a strong suppression of the total
shift by the multilevel structure. An example is the case
with a pulse area of θ = π/4 presented in Fig. 3(b) and
(d) for the same 2D lattice configuration of (a) and (c).
Due to the strong suppression of the total shift when
addressing the −1/2 transition [see Eq. (5)], the beyond-
MF contributions become comparable in magnitude to
the actual shift. Figure 3(b) shows that this holds true
for lattices of size up to ∼ 103 atoms. Note, however,
that in this case the beyond-MF term is suppressed in
the large B-field limit.

Conclusion.—We have shown that dipolar frequency
shifts are strongly modified in systems featuring a mul-
tilevel structure. The predicted two orders of magni-
tude suppression obtained by properly addressing spe-
cific transitions can lead to the improved accuracy neces-
sary for the exploration of fundamental physics [21–25],
providing new insights on the behavior of strongly and
long-range interacting many-body systems.
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dat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N.
Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany,
M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini,
P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati,
F. Levi, and D. Calonico, Nature Physics 14, 437 (2018).

[23] C. Sanner, N. Huntemann, R. Lange, C. Tamm, E. Peik,
M. S. Safronova, and S. G. Porsev, Nature 567, 204
(2019).

[24] A. Derevianko and M. Pospelov, Nature Physics 10, 933
(2014).

[25] C. J. Kennedy, E. Oelker, J. M. Robinson, T. Bothwell,
D. Kedar, W. R. Milner, G. E. Marti, A. Derevianko,

http://dx.doi.org/10.1038/ncomms7896
http://dx.doi.org/10.1038/ncomms7896
http://dx.doi.org/ 10.1103/RevModPhys.87.637
http://dx.doi.org/10.1038/nphoton.2016.231
http://dx.doi.org/10.1103/PhysRevLett.119.253001
http://dx.doi.org/10.1126/science.aam5538
http://dx.doi.org/ 10.1038/s41586-018-0738-2
http://dx.doi.org/ 10.1038/s41586-018-0738-2
http://dx.doi.org/10.1038/s41586-020-3009-y
http://dx.doi.org/10.1103/PhysRevLett.126.011102
http://dx.doi.org/ https://doi.org/10.1016/j.aop.2013.11.002
http://dx.doi.org/ https://doi.org/10.1016/j.aop.2013.11.002
http://dx.doi.org/ 10.1038/nphys3061
http://dx.doi.org/10.1103/PhysRevLett.117.220401
http://dx.doi.org/ 10.1103/PhysRevX.6.021030
http://dx.doi.org/ 10.1103/PhysRevX.6.021030
http://dx.doi.org/ 10.1103/PhysRevB.97.155156
http://dx.doi.org/ 10.1038/s41586-018-0661-6
http://dx.doi.org/10.1038/s41567-020-0986-6
http://dx.doi.org/ 10.1038/s42254-020-0195-3
http://dx.doi.org/ 10.1103/PhysRevLett.124.203201
http://dx.doi.org/ 10.1103/PhysRevLett.124.203201
http://dx.doi.org/10.1126/science.1192720
http://dx.doi.org/10.1038/s41567-017-0042-3
http://dx.doi.org/10.1038/s41586-019-0972-2
http://dx.doi.org/10.1038/s41586-019-0972-2
http://dx.doi.org/10.1038/nphys3137
http://dx.doi.org/10.1038/nphys3137


6

and J. Ye, Phys. Rev. Lett. 125, 201302 (2020).
[26] T. Bothwell, D. Kedar, E. Oelker, J. M. Robinson, S. L.

Bromley, W. L. Tew, J. Ye, and C. J. Kennedy, Metrolo-
gia 56, 065004 (2019).

[27] G. E. Marti, R. B. Hutson, A. Goban, S. L. Campbell,
N. Poli, and J. Ye, Phys. Rev. Lett. 120, 103201 (2018).

[28] D. E. Chang, J. Ye, and M. D. Lukin, Physical Review
A 69, 023810 (2004).

[29] L. Ostermann, H. Zoubi, and H. Ritsch, Optics Express
20, 29634 (2012).

[30] L. Ostermann, H. Ritsch, and C. Genes, Phys. Rev. Lett.
111, 123601 (2013).
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