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Dielectric particles in weakly conducting fluids rotate spontaneously when subject to strong elec-
tric fields. Such Quincke rotation near a plane electrode leads to particle translation that enables
physical models of active matter. Here, we show that Quincke rollers can also exhibit oscillatory
dynamics, whereby particles move back and forth about a fixed location. We explain how oscilla-
tions arise for micron-scale particles commensurate with the thickness of a field-induced boundary
layer in the nonpolar electrolyte. This work enables the design of colloidal oscillators.

Solid particles in weakly conducting fluids are long
known to rotate spontaneously when subject to static
electric fields above a critical magnitude [1]. So-called
Quincke rotation derives from the field-induced charg-
ing of the particle surface to create an unstable dipolar
contribution that relaxes by mechanical rotation in the
external field. Rotation near a solid boundary enables
particle propulsion underlying recent experimental mod-
els of active matter [2–4]. The Quincke instability is well
described by the Taylor-Melcher leaky dielectric model,
which treats the fluid as a homogeneous Ohmic conductor
containing no free charge [5, 6]. For nonpolar electrolytes
[7–9] subject to strong fields, the validity of this assump-
tion requires the rapid generation and recombination of
charge carriers within the fluid. To maintain an electric
current, carriers must be generated within fluid volumes
of finite thickness near system boundaries. Within such
boundary layers, the assumption of the leaky dielectric
model breaks down, and new types of electrohydrody-
namic phenomena can arise.

For a symmetric binary electrolyte, the boundary layer
thickness can be approximated as ` = eµEe/krno where
e, µ, and no are the charge, mobility, and density of car-
riers, Ee is the external field strength, and kr is a rate
constant for ion recombination. Carriers are removed
from the boundary region at a rate equal to the flux
eµnoEe. At steady-state, this flux is balanced by car-
rier generation within the boundary layer, which occurs
at a rate equal to that of carrier recombination in the
bulk krn

2
o. For nonpolar solutions of AOT surfactant

commonly used in the study of Quincke rollers, external
fields are expected to generate boundary layers as large
as 10 µm—comparable to the size of colloidal particles.

Here, we investigate the dynamics of particles within
such field-induced boundary layers and observe oscilla-
tory motions that are not predicted by the leaky dielec-
tric model. Our experiments are based on polystyrene
spheres dispersed in AOT-hexadecane solutions above
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a planar electrode. The application of an electric field
above a critical magnitude causes the particles to roll
steadily across the electrode surface [2]. Upon further
increasing the field strength, however, the particles begin
to oscillate back-and-forth with an amplitude compara-
ble to their diameter. This behavior was briefly noted in
previous work [10]; however, the mechanism underlying
particle oscillations was not investigated or explained.

Owing to their small size, the oscillations cannot be at-
tributed to inertial effects. Moreover, simulations based
on the leaky dielectric model are unable to reproduce
the observed oscillations—even when accounting for the
proximal electrode. By relaxing model assumptions to
account for the finite rates of ion formation and recom-
bination, we show how Quincke oscillations can arise for
particles comparable in size to the boundary layer thick-
ness. Oscillations derive from new couplings among the
charge moments on the particle surface introduced by
asymmetries in the rates of charging within the boundary
layer. Consistent with this mechanism, we demonstrate
that oscillations are not observed for larger particles that
extend beyond the boundary layer or for particles mov-
ing within the bulk electrolyte. Together, these results
enable the design of colloidal oscillators and highlight the
significance of electric boundary layers on the active mo-
tions of particles and their ensembles.

In our experiments, polystyrene spheres are dispersed
at low volume fraction in hexadecane solutions of AOT
surfactant. The dispersion is sandwiched between paral-
lel electrodes, where the particles sediment under gravity
to the lower boundary (Fig. 1a). Upon application of
an external field Ee, the particles move on the electrode
surface as captured by high speed video microscopy. De-
pending on the strength of the applied field, we observe
three types of particle motion termed stationary, rolling,
and oscillating (Fig. 1b,c).

For external fields weaker than a critical value, parti-
cles remain motionless (Fig. 1b, left). Above this value,
particles roll along the electrode in random directions
perpendicular to the applied field with a constant speed
(Fig 1b, middle). Further increasing the field, we ob-
serve a second transition whereby particles cease to roll
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and instead oscillate back-and-forth (Fig. 1b, right). The
time-averaged particle speed increases with field strength
before slowing abruptly at the onset of oscillations (Fig.
1c, markers). Accompanying this transition from rolling
to oscillating, temporal variations in particle speed in-
crease in magnitude from zero to a finite value (Fig. 1c,
error bars). In addition to these descriptive statistics,
we use Bayesian model selection [11, 12] to classify each
particle trajectory based on competing models for sta-
tionary, rolling, and oscillating dynamics (Fig. 1c, colors;
see Supplemental Material [13], Section 2).

The observed transition from stationary to rolling
agrees qualitatively with predictions of the leaky dielec-
tric model for a spherical particle immersed in an un-
bounded fluid with respective permittivities εp, εf and
conductivities σp, σf. The model predicts that the sta-
tionary solution becomes unstable when the external field
strength exceeds the critical value [14–16]

Ec =

√
2η

εfτmw(εcm − σcm)
(1)

where η is the fluid viscosity, τmw = (εp+2εf)/(σp+2σf) is
the Maxwell-Wagner time, and xcm = (xp−xf)/(xp+2xf)
for x = ε, σ are the Claussius-Mossotti factors charac-
terizing the high and low-frequency polarizability of the
sphere, respectively. Above this field, the angular ve-
locity and thereby the rolling speed U increase with in-
creasing field strength as U = (κa/τmw)[(Ee/Ec)

2−1]1/2

where κ ≤ 1 is a dimensionless coefficient characteriz-
ing the strength of rotation-translation coupling (Fig.
1c, solid curve). Consistent with this model, the criti-
cal field strength is independent of particle radius a but
increases with increasing AOT concentration, which in-
creases the conductivity of the fluid (Supplemental Ma-
terial [13], Sections 3.1 & 3.2).

Near the transition from rolling to oscillating, parti-
cles exhibit a mixture of intermediate behaviors such as
rolling in a common direction with a time-periodic speed
and rolling with aperiodic reversals in direction (Supple-
mental Material [13], Section 3.3). Similar behaviors at-
tributed to inertial effects were reported for larger spheres
(a = 50 µm) under stronger confinement (L/a ≈ 4) [17].
Here, we neglect this transition region and focus instead
on the previously undescribed phenomenon of back-and-
forth oscillations.

Oscillatory dynamics are reliably observed for strong
fields, Ee/Ec > 3, when the ratio between the parti-
cle radius and the boundary layer thickness is of or-
der unity, a/` ∼ 1 (Fig. 2). In estimating this length
scale, ` = eµEe/krno, we approximate the mobility of
AOT micelles as µ = (6πηah)−1 where ah = 1.7 nm is
the reported hydrodynamic radius [9]. We further as-
sume that the rate constant for neutralizing collisions
among charged micelles is diffusion-limited such that
kr = 2e2µ/εf [6, 18]. Finally, we estimate the concentra-
tion of charged micelles from the measured conductivity
as no = σf/2e

2µ (Supplemental Material [13], Section 1).
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FIG. 1. (a) Schematic illustration of the experimental setup.
The inset shows the ionization of AOT micelles, which is bal-
anced by recombination in the bulk and by field-induced mi-
gration in boundary regions of thickness `. (b) Time-lapse
microscopy images showing the three observed particle be-
haviors: stationary, rolling, and oscillating. Here, the particle
radius is a = 5 µm, the AOT concentration is [AOT] = 150
mM, and the electrode separation is L = 150 µm. Scale bars
are 40 µm. See also Supplementary Material [13], Video 1.
(c) Time-averaged particle speed vs. external field strength
Ee. For each 20 ms trajectory, we compute the mean and
standard deviation of the particle speed. Markers denote the
median of these mean speeds for ca. 1000 trajectories; error
bars denote the median of the corresponding standard devi-
ations. The plotted data are colored based on probability
assignments of the Bayesian classifier. The solid curve is a fit
of the form U = (κa/τmw)[(Ee/Eo)2−1]1/2 with κ = 0.40 and
Eo = 2.3 V/µm; the Maxwell-Wagner time is τmw = 0.70 ms
from independent conductivity measurements (Supplemental
Material [13], Section 1). Note that the fitted value of the
field strength Eo differs from that predicted by equation (1)
for an unbounded sphere, Ec = 0.91 V/µm.

The resulting boundary layer thickness ` varies from 1 to
20 µm depending on the AOT concentration and the ex-
ternal field strength. Notably, large particles (a/` � 1)
that extend beyond the boundary region do not oscillate
but rather roll at even the highest fields investigated (Fig.
2). Small particles (a/` � 1) do not move at all; their
otherwise Brownian motion is arrested upon application
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FIG. 2. Phase diagram showing the observed dynamics as
a function of two dimensionless parameters: a/`, the ra-
tio of the particle radius and the boundary layer thickness;
Ee/Ec, the ratio of the external field strength and the critical
field of equation (1). Plotted data correspond to experiments
on five different particle sizes a = 0.5, 1.5, 2.5, 5, 25 µm (for
[AOT] = 150 mM) and three different AOT concentrations
[AOT] = 50, 100, 150 mM (for a = 5 µm). Markers are col-
ored based on probability assignments of the Bayesian classi-
fier (Supplemental Material [13], Section 2).

of the field (Supplemental Material [13], Section 3.4).
The frequency of particle oscillations ω is compara-

ble to the dipolar relaxation rate τ−1mw and increases with
increasing field strength (Fig. 3a,b). Experiments at dif-
ferent AOT concentrations suggest that the oscillation
frequency is well approximated as ω ≈ 0.09τ−1mwEe/Ec

(Supplemental Material [13], Section 3.5). This form is
identical to that of the rolling frequency predicted by the
leaky dielectric model, suggesting that the oscillation fre-
quency is set by a similar balance of particle rotation and
charge accumulation at the particle surface.

The peak-to-peak amplitude of the oscillating particle
position is approximately 2A ≈ πa (Fig. 3c). This ob-
served quantity is linearly related to the angle 2A/κa
by which the particle rotates during each half of the
oscillation cycle. If one assumes frictional rolling with
κ = 1, the observed amplitude would imply a rotation of
ca. 180◦. By contrast, the assumption of hydrodynamic
rolling with a thin lubricating film [19, 20] requires that
κ ≤ 1/4 and implies a rotation of at least two revolutions
per half cycle. Below, we present a model for particle os-
cillations that favors the former interpretation based on
frictional rolling.

Owing to the small size of the particles, the observed
oscillations cannot be attributed to inertial effects. The
Reynolds number for particle oscillations is much less
than unity, Re = ρωa2/η ∼ 10−3, where ρ is the fluid
density. The hydrodynamic resistance to motion is there-
fore proportional to the particle velocity. Moreover, par-
ticle inertia is also negligible as evidenced by the small
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FIG. 3. (a) Particle position r vs. time t for PS spheres (radius
a = 5 µm) in different AOT-hexadecane solutions. The ap-
plied field is Ee/Ec = 5.4, which corresponds to Ee = 2.2, 3.7,
and 4.8 V/µm for [AOT] = 50, 100, and 150 mM, respectively.
(b) Oscillation frequency ω vs. external field strength Ee for
different AOT concentrations. Markers denote the mean fre-
quencies within populations of particle trajectories of equal
duration; error bars denote standard deviations of these pop-
ulations. (c) Peak-to-peak oscillation amplitude 2A vs. ex-
ternal field strength Ee for the three AOT concentrations in
(b). Markers denote the mean frequencies; error bars denote
standard deviations.

Stokes number, St = ρpa
2/15ητmw ∼ 10−4, where ρp is

the density of the particle. With finite particle inertia,
Quincke dynamics of a sphere in an unbounded fluid is
mathematically identical to the Lorenz system [21] and to
the Malkus water wheel [22], which are known to exhibit
oscillatory and chaotic dynamics [23]. In the absence of
inertial effects, however, only the stationary and rolling
solutions are permitted by the leaky dielectric model in
an unbounded fluid.

Control experiments on particles within the bulk fluid
suggest that oscillatory dynamics occur only near the
electrode surface. We use a standing acoustic field to
levitate particles at the mid-plane between two planar
electrodes [24] and observe their motion upon application
of the electric field (Supplemental Material [13], Section
4 & Video 2). In the absence of the acoustic field, the
application of a strong electric field drives the particles
to oscillate at the electrode surface. Such oscillations are
not observed when the same field is applied to particles
levitating at the mid-plane of the chamber. Instead, par-
ticles in the bulk fluid exhibit steady rotation consistent
with predictions of the leaky dielectric model.

To understand why particles of intermediate size os-
cillate near the electrode (see Fig. 2), we first consider
the transport of charged AOT micelles around a station-
ary sphere near a plane boundary (Fig. 4a,b). The elec-
tric field and the carrier densities are modeled using the
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Poisson-Nernst-Planck (PNP) equations modified to de-
scribe the generation and recombination of charged mi-
celles within the electrolyte [6, 25] (Supplemental Mate-
rial [13], Section 5). At steady-state, the solution is char-
acterized by three length scales: the particle radius a, the
Debye length λD = (εfkBT/2e

2no)1/2, and the boundary
layer thickness ` associated with carrier recombination.
We focus our analysis on the limit of strong fields rel-
evant to our experiments, for which Ee � kBT/e` or,
equivalently, ` � λD. At the anode (cathode), we as-
sume that the injection of positive (negative) charge car-
riers is negligible compared to their formation within the
electric boundary layer [26]. Under these conditions, the
behavior of large spheres (a � `) is well described by
the leaky dielectric model. Charge accumulates at the
particle surface as to redirect the electric field and the
associated electric current around the particle (Fig. 4a).
The Quincke instability is caused by the relaxation of
this dipolar charge distribution via particle rotation.

For small spheres (a � `), however, the accumula-
tion of charge at the particle surface is mitigated by the
diffusive-leaking of charge carriers around the sides (Fig.
4b). The comparatively little charge that accumulates
does not significantly alter the electric field. Without a
sufficiently large dipole moment directed antiparallel to
the external field, there can be no Quincke rotation for
these small particles (cf. Fig. 2). Moreover, such par-
ticles are characterized by a net charge that contributes
additional electrostatic forces directed to the nearby elec-
trode. The attraction of small particles to the electrode
surface helps to explain the field-induced arrest of their
Brownian motion.

For particles of intermediate size (a ∼ `), the observed
oscillations are explained by asymmetries in the rates of
charging between the top and bottom of the particle.
Within the confined region separating the particle and
the electrode, ionic currents are limited by the finite rate
of ion formation in the fluid. Within such a region of
thickness δ, the ion current does not exceed krn

2
oδ, which

is less than the ion current in the bulk, eµnoEe, provided
that δ < ` (Supplemental Material [13], Section 5). As
a result, the bottom half of the particle surface charges
more slowly than the top half. This asymmetric charg-
ing can be incorporated qualitatively into the leaky di-
electric model by introducing a position-dependent fluid
conductivity which increases linearly with distance z
from the electrode surface. This approximate treatment
avoids the computationally challenging task of solving
the time-dependent PNP equations governing the forma-
tion, transport, and recombination of charged micelles.
With the addition of the conductivity gradient, numer-
ical simulations of the leaky dielectric model effectively
reproduce the particle oscillations observed in experiment
(Fig. 4c, pink diamonds & blue circles).

In the model, we consider a dielectric sphere of radius
a immersed in a conductive fluid at a distance δ from a
plane electrode (Supplemental Material [13], Section 6).
Application of an external field Ee drives the accumula-
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FIG. 4. (a,b) Simulated electric field around a stationary
sphere in a model electrolyte above a plane electrode; color
map shows the charge density [13]. The radii of the large
(a) and small (b) spheres are a/` = 3.5 and a/` = 0.14,
respectively. Other parameters include the Debye length
λD/` = 0.028, the surface separation δ/a = 0.1, the particle
permittivity εp/εf = 1.2, and the recombination rate constant
krεf/e

2µ = 2. (c) Time-averaged angular speed Ω scaled by
τ−1
mw vs. external field strength Ee scaled by Ec for three vari-

ations of the leaky dielectric model: an unbounded sphere, a
sphere at a plane electrode with constant fluid conductivity,
and a sphere at an electrode with a conductivity gradient.
The particle permittivity is εp/εf = 1.5; the surface separa-
tion is δ/a = 0.1; the conductivity gradient is σf/(2a+ δ); the
resistance coefficient is R/8πηa3 = 1.45. The shaded region
denotes one standard deviation about the average speed. (d)
Angular position θ vs. oscillation phase ωt for Ee = 5.3Ec.
(e) Oscillation frequency ω scaled by τ−1

mw vs. external field
strength Ee scaled by Ec.

tion of charge at the particle-fluid interface; the effects
of free charge within the electrolyte are neglected. The
fluid conductivity is assumed to vary with distasnce z
from the electrode as σfz/(2a+ δ), approaching the bulk
value σf at the top of the particle. The angular velocity
of the particle (parallel to the plane) is linearly related to
the electric torque as Ω = T/R, where R = 8πηa3f(δ/a)
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is the relevant resistance coefficient. With these assump-
tions, the particle dynamics agree qualitatively with the
experimental observations (cf. Figs. 1c & 4c). At suffi-
ciently high field strengths—here, greater than 3.7 times
the critical field Ec for an unbounded sphere—the par-
ticle oscillates back and forth with an peak-to-peak am-
plitude of ca. 200◦ (Fig. 4d). The oscillation frequency ω
increases in proportion to the external field strength Ee

(Fig. 4e).

Physically, particle oscillations combine the basic el-
ements of the traditional Quincke mechanism—namely,
charge accumulation and mechanical relaxation—with
new couplings among the charge moments introduced by
the conductivity gradient. For a sphere in an unbounded
fluid of constant conductivity, the dynamics of Quincke
rotation can be described in terms of the particle’s dipole
moment, which evolves independently from the other mo-
ments [14, 15]. Within a conductivity gradient, however,
the disturbance field produced by one moment leads to
currents that alter the others. Inspection of the tran-
sient charge moments for an oscillating sphere reveal a
quadrupole moment which is approximately constant in
the particle reference frame (see Supplementary Material
[13], Section 6.3 & Fig. S15). The disturbance field pro-
duced by this quadrupole contributes to the charging of
the dipole moment as to reverse the direction of rotation,
thereby enabling back-and-forth oscillations. Similar os-
cillatory dynamics are observed in a closely related me-

chanical model, a modified Malkus water wheel [22, 23]
with overdamped dynamics and position-dependent leak-
age (Supplemental Material [13], Section 7 & Video 3).

To conclude, asymmetric charging within electric
boundary layers results in Quincke oscillations of col-
loids in the absence of inertial effects or electrohydro-
dynamic flows. Additional experiments on particles of
different shapes suggest that these oscillations can be
achieved for any dielectric particle of suitable size (Sup-
plemental Material [13], Section 8 & Video 4). This
mechanism may therefore provide a useful experimen-
tal model for active matter [27] comprised of many self-
oscillating units, where particle interactions—neglected
herein—mediate their collective dynamics. More gener-
ally, Quincke oscillations illustrate the potential impor-
tance of field-induced boundary layers within nonpolar
fluids. Even away from electrode surfaces, such boundary
layers are expected to influence the dynamics of micron-
scale Quincke swimmers [28–30].
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