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The major obstacle preventing Feynman diagrammatic expansions from accurately solving many-
fermion systems in strongly correlated regimes is the series slow convergence/divergence problem.
Several techniques have been proposed to address this issue: series resummation by conformal
mapping, changing the nature of the starting point of the expansion by shifted action tools, and
applying the homotopy analysis method to the Dyson-Schwinger equation. They emerge as dissimilar
mathematical procedures aimed at different aspects of the problem. The proposed homotopic action
offers a universal and systematic framework for unifying the existing—and generating new—methods
and ideas to formulate a physical system in terms of a convergent diagrammatic series. It eliminates
the need for resummation, allows one to introduce effective interactions, enables a controlled ultra-
violet regularization of continuous-space theories, and reduces the intrinsic polynomial complexity
of the diagrammatic Monte Carlo method. We illustrate this approach by an application to the

Hubbard model.

Methods of quantum field theory have underpinned re-
markable breakthroughs in condensed matter physics for
three quarters of a century [I]. They provide an arsenal
of tools, based on Feynman diagrams, for systematic de-
scription of many-body correlations. Early on it was rec-
ognized that series of Feynman diagrams are not always
meaningful if summed to high orders [2], but the versa-
tility of constructing expansions around different start-
ing points [3HI] and self-consistent renormalization of
their building blocks for incorporating correlation effects
in low orders [I], B, [I0] have rendered the diagrammatic
technique a widespread language of theoretical physics.
Recent explosive development of algorithms for numeric
summation of the series using stochastic sampling, the
so-called diagrammatic Monte Carlo (DiagMC) approach
[5L [7H9, 11H27], has opened a new pathway to solving
strongly correlated systems with high and a prior: con-
trolled accuracy. The role of controlling and improving
the series properties has become key for reaching this
goal.

It was found, in particular, that convergence of the
self-consistently renormalized (bold-line) technique [I0]
with diagram order does not yet guarantee that the re-
sult is correct [28]. On the other hand, a wide class of
dressed diagrammatic expansions can be formulated as
a Taylor series in the powers of a single parameter &,
which has well-defined analytic properties free from mis-
leading convergence [6]. In this formalism, where the
expansion is based on the so-called shifted action, the
arbitrary choice of the zeroth-order action was shown
to improve convergence [5l, [[H9]. Furthermore, when a
subset of strongly correlated degrees of freedom can be
solved exactly, an expansion around this solution, accom-
plished, e.g., by diagrammatic extensions of the dynami-
cal mean-field theory (DMFT) [29H33], often has superior
convergence properties [19, 25]. Whenever transforming

the action does not yet yield a convergent series, a wealth
of techniques, such as conformal mapping and numerous
analytic continuation methods [5] [16] 22| 23] 34}, B85], al-
lows to reliably reconstruct the result behind the series
by an a posteriori protocol. Even certain cases with zero
convergence radius become tractable [34] [35].

Nonetheless, formulating a many-body problem in
terms of a convergent diagrammatic power series is im-
portant. It was demonstrated [36] that, when the series
converge, DiagMC circumvents the fundamental compu-
tational complexity of interacting fermions, known as the
negative sign problem [37, [38]. Since Feynman diagrams
can be constructed directly in the thermodynamic limit,
the only systematic error in the final answer comes from
the truncation of the series at some large order n and the
truncation error drops exponentially with n for a conver-
gent series. Recent efficient algorithms based on sum-
mation of connected diagrams in terms of determinants
[9, 2024, 27] take exponential in n time to evaluate the
order-n sum, which implies only polynomial scaling of
the calculation time with the inverse of the desired er-
ror bound. Moreover, fast convergence of the series is
essential for novel DiagMC methods that compute real-
time dynamic properties using symbolic integration [39-
42], where fewer terms of the series could be obtained in
principle. More generally, having to deal with the prob-
lem of reconstructing the answer from divergent series
has been a major drawback of diagrammatic approaches,
requiring additional expertise and labor, and impeding
proliferation of DiagMC methods for non-expert users.

In this Letter, we show that the shifted-action tools,
conformal mappings, and homotopy ideas can be used
to design what we propose to call a “homotopic action,”
Sp. The diagrammatic expansions based on this action
produce series that converge automatically in cases when
conformal mapping in combination with the shifted ac-



tion solves the problem, with guaranteed reduction of
computational complexity and additional possibilities for
further iterative refinements. We illustrate this idea
by constructing a homotopic action for a prototypical
fermionic system, the doped two-dimensional (2D) Hub-
bard model, in a challenging correlated regime where the
standard diagrammatic expansion diverges. The guaran-
teed convergence of expansions based on S} allows di-
rect evaluation of observables by DiagMC with a single
parameter n controlling the accuracy. To this end, we
implement a DiagMC algorithm based on the connected
determinant Mote Carlo (CDet) [20] method, and demon-
strate that it substantially improves the accuracy of the
result in comparison with that inferred from an analytic
continuation of the original divergent series obtained by
CDet.

As an example of new capabilities naturally emerging
in the homotopic action framework—and distinctively
different from existing shifted-action and conformal-
mapping approaches—we propose a protocol for “anti-
collapse” regularization of continuous-space theories. It
solves, at least conceptually, the notorious problem of
zero convergence radius due to Dyson’s collapse [2] by
generating a convergent expansion in terms of the bare
coupling, such as, e.g., the Coulomb potential.

Shifted action as the simplest case of homotopic action.
A generic interacting fermionic system is described by an
action of the form

where Sy is a bi-linear in the Grassmann fields ¥ part,
Sint[¥] contains higher-order in ¥ interaction terms, and
g is the coupling constant. In strongly correlated regimes,
one often finds that the most straightforward approach to
constructing Feynman diagrams—Dby expanding around
Sp in the powers of g—fails because the series diverge for
the physical value of interest g = g.. The convergence
radius in the complex plane of g can even be zero for
models formulated in continuous space [2]. Unless the
system undergoes a phase transition when g is contin-
uously increased from zero to g., this divergence stems
from singularities in the complex plane, as illustrated in
Fig.[1] the closest one to the origin g5 defining the conver-
gence radius |gs|. Our intuition about such singularities
is very limited because they are not necessarily based on
the ultra-violet physics or phase transitions taking place
when the sign of g is flipped, while for complex g the
Hamiltonian becomes non-Hermitian and hence unphys-
ical.

One way to get around the series divergence problem is
to “shift” the expansion point bringing the physics of in-
terest inside the convergence radius (right half of Fig. [1f).
In its simplest form, the idea [3], 5H7] is to replace the
original action with one of the form

S[W; €] = So[¥] + A[T; €] + £gSime[P] - (2)

Here A[¥;¢] is bilinear in ¥ and it is assumed that its

FIG. 1: Schematic of how a singularity gs in the complex
plane of the coupling g leads to a divergent series for the
physical value g., and how the shifted action trick works: it
amounts to changing the “origin of expansion” and introduc-
ing a different expansion parameter £; the physical model is
reproduced for & = 1, the singularity s controlling the con-
vergence. Illustratory poles and branch cuts are depicted by
dots and solid lines, respectively.

dependence on £ can be represented by a Taylor series
A= N, (3)
j=1

convergent for any £ < 1. The only restriction that an
arbitrary set of Sy and {A;} functionals (the latter are
called counter-terms) have to satisfy is

So[W] + A[¥; & = 1] = So[¥], (4)

so that S (6 =1) = S. The diagrammatic expansion is
now performed in the powers of £ and Sy serves as the
new state on top of which the expansion is done.

This tool can be used to expand around various mean-
field and self-consistent solutions based on a limited set
of skeleton diagrams, such as the Hartree-Fock or GW
approximations, states with explicitly broken symmetry,
or any other approximate solution that is considered to
be close to the final answer. The resulting series in £ may
happen to be convergent even in the strongly correlated
regime [5 [7HI).

Going one step further, the two-body interaction terms
between fermions can be decoupled using the Hubbard-
Stratonovich transformation involving complex-number
fields ¢ and the original action can be rewritten as (in
some cases this action is considered as the original one in
the first place)

S, o] = So[¥] + Dole] + v/gVint [V, ¢] . (5)

At this point, the shifted action trick can be applied in
both fermionic and bosonic channels

S(&) = So[W]+ Do)+ A[¥; €] + Q3 €] + v/ EgVim [, si]G ),
and used to effectively change the nature of the interac-
tion terms, order-by-order. The Taylor series in & for A
and €2 are chosen to be convergent in the unit circle of &
[by construction, A(§ = 0) = 0 and Q(§ = 0) = 0] with
only one condition to satisfy for otherwise infinite set of
arbitrary functions: S({ =1) = S.

Flexibility in designing shifted actions with large num-
ber of non-linear in £ counter-terms is almost never used



and most often only the simplest, linear in £, shifts A of
the Green’s function are implemented, with notable ex-
ception of Coulomb systems where screening is required
for having a meaningful expansion [6,[§]. With the help of
suitable Hubbard-Stratonovich transformations one can
introduce new and manipulate arbitrary many-body in-
teractions [6], but the formalism is becoming progres-
sively more complex.

Beyond shifting, integrating out the original variables
with the local action allows one to incorporate arbitrarily
strong local correlations at the starting point of the ex-
pansion, as demonstrated by the dual fermion and boson
theories [3IH33]. The dual diagrammatic series describ-
ing only non-local correlations are expected to be better
behaved.

Regardless of how the effective action is transformed,
the resulting series may still diverge. So far, the standard
protocol for dealing with this problem has been to apply
series resummation techniques. The most versatile and
widely used one is based on conformal mapping, illus-
trated in Fig. 2} First, one identifies singularities in the
complex plane of the expansion parameter, either ana-
lytically, using additional knowledge about system prop-
erties [23], 35 43], or numerically, by matching the com-
puted power series ), ax k¥ by some analytic expression
A(€) [22,[44H48]: pole singularities are captured precisely
by A(£) that is a ratio of two polynomials, known as
the Padé approximant [44]; brunch cuts are described by
A(€) of a more general form, e.g., the Dlog-Padé [45],
integral [46], or hypergeometric/Meijer-G [47, 48] func-
tions. Knowing the location of the singularity & closest
to the origin, one can transform the complex plane of &
by an analytic function w = w(§), w(0) = 0, to a do-
main of the complex variable w where the singularity is
farther away from the origin than the image of £ = 1,
|w(&s)| > |w(1)|. Then, upon expressing the inverse map
&(w) as

g = Z fkwk 3 (7)
k=1
the re-expansion of the original series,

D aE(w) — D bw(E), (8)
J k

is convergent at w(§ = 1). More generally, the mathe-
matical literature on the topic of series resummation is
vast, making divergent series practically useful, provided
a sufficient number of terms is known and singularities
are reasonably well understood. The homotopic action
allows to incorporate the principles of resummation in
the formulation of the physical problem itself.

General homotopic action. The standard definition of
homotopy is a continuous transformation of one function
into another. In the shifted action formalism described
above, we aim at optimizing the diagrammatic expan-
sion by selecting an appropriate starting action S(£§ = 0)
and its continuous transformation into the physical ac-
tion S = S(¢ = 1), similarly to the homotopy at the

FIG. 2: Under conformal mapping, singularities defining the
convergence radius (dot) are moved farther away from the
origin and the series for the point of interest (star) converge.

heart of the functional renormalization group (fRG) [49-
51], DMF2RG [52], and homotopy analysis [53} [54] meth-
ods. If we distance ourselves from the specifics of how
various shifts are implemented, we recognize that a far
more intuitive and transparent way to cast the attempted
transformation of the action would be to write

Sh(w) = go + A;L(w) + S’mt(w) , (9)

where Sy and Ay, are bilinear in all fields, the dependence
of Ap(w) and Siy(w) on w can be represented by the
convergent Taylor series for |w| < |w.|, cf. Eq. (3), and
Sh(wy) = S for some w,. There are no restrictions other-
wise on the nature and number of terms contributing to
Ap(w), and Sipe(w). They may be “standard” counter-
terms based on bare or skeleton diagrams, symmetry
breaking and restoring fields, as well as arbitrary new
interaction terms introduced by the homotopic transfor-
mation of the following (or similar) form

Sp(w) = Sp(w) + w(w — wy)Sef - (10)

Here Seg is chosen to capture the emerging physics of
strong correlations already at the lowest orders of the ex-
pansion in w. Its form can be based on phenomenological
considerations or explicit calculations in the framework
of fRG [49-51] or DMF2RG [52].

While it is hard to comprehend the ultimate potential
of the homotopic action approach, it is easy to see that
it will automatically reproduce the result of conformal
mapping, i.e. the diagrammatic series based on S, will
converge. Indeed, if the series based on the action S(¢)
diverge, then Eq. can be used to construct the ho-
motopic action Sy (w) = S(&(w)), with w, = w(€ = 1).
This procedure results in complete re-shuffling of counter-
terms and interaction terms between the orders in such a
way that the expansion in the powers of w is now conver-
gent because it is precisely the series on the r.h.s. of ,
as follows from trivial power counting. When this series
is summed by DiagMC, the error bars on the final answer
improve. The exploding in the limit of large n original co-
efficients a,, are suppressed/canceled out directly within
the statistical weight of contributions to b,, leading to a
reduction of the Monte Carlo variance, which is missing
when the resummation is applied after computing the
coefficients a,,. This accuracy gain enables iterative im-
provement of the homotopic action Sp(w) itself, aimed
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FIG. 3: Results for the total fermion density of the 2D Hub-
bard model at T'= 0.2¢, U = 7t, p = 1.8959¢. (a) Partial sum
of the divergent series for the original action 5(5 =1) and
the convergent series for the homotopic action Sp(w.). (b)
Efficiency gain of Sy (w) over S(£) with its series resummed
by w(&), defined as the ratio of the respective computational
times needed to obtain density within the error €. Inset: the
corresponding computational times and the reduction of the
asymptotic polynomial scaling (dotted line).

at further increasing the precision of the solution: Hav-
ing analyzed the singularity structure in the w-plane, one
could construct a subsequent conformal map w’ = w’(w)
to obtain the action Sp(w') = Sp(w(w’)) with a faster-
converging expansion, and so on.

On the practical side, there is no computational over-
head in using S} instead of S in DiagMC algorithms
where the sum of all connected diagram topologies of a
given order is performed deterministically using determi-
nants and only the integration over the internal variables
is done by Monte Carlo sampling [9, 20H22] 24], 27] (the
CDet algorithm and its derivatives). When computing
the integrand of order n, these algorithms intrinsically
evaluate contributions from all expansion orders up to n.

Figure [3] illustrates the efficiency of the homotopic ac-
tion approach within the CDet framework by its appli-
cation to the 2D Hubbard model on the square lattice.

4

The standard shifted action for the model [4, [ [7] reads
S0, €] = So [W] + A[W;€] + €U S [9]

N vyr
S0 =3 [ dr T ()0~ )W (r)

0

1/T o
= /0 dr (U, (1)¥,;,(1) +cc.)

(11)

Here, W,,(7) represents the spin-o Grassmann field at
the imaginary-time 7 on the site i; T is the tempera-
ture, p chemical potential, ¢ nearest-neighbor hopping
amplitude, U on-site repulsion, and « is the arbitrary
shift parameter. Despite the shift, diagrammatic expan-
sions with this action are divergent, e.g., for T = 0.2t
U =Tt p = 18959, a = 2.5568 due to a singularity
at & ~ —0.65. We construct the homotopic action by
Sh(w) = S[¢(w)], which generates a convergent expan-
sion with &(w) = 12w/7(1 — w)? mapping the branch cut
along the real axis from £ = —3/7 to —oo onto the unit
circle |w| = 1.

Figure a) presents the partial sum of the convergent
series ) b,wY for the total density with b, generated by
the homotopic action S}, contrasted to that of the diver-
gent series ) a, produced by the original action S. The
solid circle is the result of extrapolation of the convergent
series to infinite order using the Dlog-Padé method [45].
Note that, within the homotopic action framework, the
Monte Carlo algorithm can directly sample the partial
sum . b,w™ instead of the coefficient b, (see Supple-
mental Material [55] for technical details).

When it comes to high-precision calculations, the ho-
motopic action approach yields a significant efficiency
gain as compared to the conventional conformal map-
ping method based of post-processing of the original se-
ries [Fig. [3(b)]. The origin of this gain, as well as its
sharp growth as a function of the inverse relative error,
1/e, within which the final result is obtained, is easy to
understand. The gain is all about the way the high-
order diagrams—important for achieving small e—are
sampled. Instead of sampling diagrammatic contribu-
tions with large weights that nearly compensate in the
final answer and leave one with large relative error bars,
the cancellation of the sign-alternating terms from differ-
ent orders is now enforced before sampling; see [55] for
more details.

Anti-collapse regularization. Dyson’s reasoning [2] for
zero convergence radius of perturbative expansions in
continuous-space systems is directly linked to the ultra-
violet (UV) behavior of attractive fermionic fields: For an
action 7 an observable can not be analytic at g = 0 if



changing the sign of g for |g| — 0 leads to a collapse—an
instability towards unlimited increase of particle density.
In systems with hard momentum cutoff, e.g. lattice mod-
els, the expansion in the powers of coupling is expected
(as supported by strong evidence) to have a finite con-
vergence radius at 7" > 0 . This observation leads to a
natural homotopic procedure for constructing a theory
with a controlled anti-collapse UV regularization. The
simplest trick (cf. infra-red regularization in fRG [49-
52]) is to modify the free-particle dispersion,

e(k) — e(k) +a(w, —w)k* (a>0). (12)
At small |w|, the quartic term prevents Dyson’s col-
lapse, allowing one to explore analyticity in w and ex-
trapolation to the w = w, limit. A more advanced and
general tool—a regularization of the interaction—is dis-
cussed in Supplemental Material.

In conclusion, the paradigm of homotopic action
Sh(w), such that Sy, (w = 0) is harmonic and Sy (w = wy)
is identical to the physical action, reveals a broad fam-
ily of convergent quantum-field-theoretical expansions in
the powers of a single (homotopy) parameter w. With an
appropriately designed Sp,(w), one can naturally unify
the shifted-action and resummation techniques, as was
illustrated by a simple and yet nontrivial example. Fur-
ther intriguing possibilities to explore in the future in-
clude, e.g. (i) ultraviolet (anti-collapse) regularization

of continuous-space theories, and (ii) the introduction in
Sh(w) of effective interactions that vanish both at w = 0
and w = w, but are otherwise arbitrary and chosen to
capture the physics of the model already at the lowest
orders of expansion, as, e.g., in approximate analytic
theories. As the expansion progresses, the homotopic ac-
tion accomplishes a seamless replacement of the effective-
interaction contributions by those from the original bare
interaction, thereby establishing control of accuracy in
effective theories.
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