
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Synchronizing Bloch-Oscillating Free Carriers in Moiré Flat
Bands

Ali Fahimniya, Zhiyu Dong, Egor I. Kiselev, and Leonid Levitov
Phys. Rev. Lett. 126, 256803 — Published 25 June 2021

DOI: 10.1103/PhysRevLett.126.256803

https://dx.doi.org/10.1103/PhysRevLett.126.256803


Bloch-oscillating free carriers in moiré flat bands
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Achieving Bloch oscillations of free carriers under a direct current, a long-sought-after collective
many-body behavior, has been notoriously hard due to stringent constraints on the band properties.
We argue that the flat bands in moiré graphene fulfill the basic requirements for observing Bloch
oscillations, offering an appealing alternative to the stacked quantum wells used in previous work
aiming to access this regime. Bloch-oscillating moiré superlattices emit a comb-like spectrum of in-
commensurate frequencies, a property of interest for converting direct currents into high-frequency
currents and developing broad-band amplifiers in THz domain. The oscillations can be synchro-
nized through coupling to an oscillator mode in a photonic or plasmonic resonator. Phase-coherent
collective oscillations in the resonant regime provide a realization of current-pumped THz lasing.

Bloch oscillations, arising when electrons are driven
through a perfect crystal lattice by an electric field, are
an iconic example of a coherent dynamics in quantum
many-body systems[1, 2]. The oscillations are at the
same frequency for all carriers, for a one-dimensional lat-
tice given by ω = eEa/~ with E the field strength and a
the lattice period. Besides the obvious fundamental ap-
peal, this behavior has long been eyed as a promising way
to convert direct currents into high-frequency currents[3].
Wide interest in this phenomenon stems from the expec-
tation that Bloch-oscillating electrons have the potential
to become the basis of a technology that will help fill the
“THz gap”, leading to radiation emitters and detectors
operating in this frequency range[4–6].

While Bloch oscillations have long been immortal-
ized in textbooks, realizing them in solids has proven
to be a challenging task. Achieving this regime re-
quires overcoming several obstacles. One is the dephas-
ing due to electron energy loss to phonons. To suppress
phonon emission exceptionally narrow electronic bands
of width smaller than the optical phonon energy must
be used. Another is the dephasing due to disorder scat-
tering. Experimental efforts so far mainly focused on
narrow minibands in synthetic MBE-grown semiconduc-
tor superlattices[6–9]. These systems cleared a number
of key milestones on the road towards achieving Bloch
oscillations. They display the signatures indicative of
Bloch oscillations such as negative differential conduc-
tivity dI/dV < 0, recurrence and ringing in the optical
pump-probe measurements, Wannier-Stark (WS) ladders
and, last but not least, optical gain[6–9]. However, upon
the injection current approaching the relevant parame-
ter range the superlattice systems develop instabilities
and show a complex noisy behavior due to the onset of
switching and formation of electric domains. This behav-
ior presents the main obstacle to achieving the collective
globally-synchronized Bloch oscillations[11–13].

Meanwhile, recently Bloch oscillations were achieved
in cold atom systems, using Bloch minibands in opti-
cal lattices[14–18]. This proof-of-principle demonstration
has greatly improved our understanding of the underlying
physics[19, 22] and strengthened interest in demonstrat-

ing electronic Bloch oscillations.
Given the difficulties encountered in semiconducting

superlattices it is natural to seek other systems that meet
the requirements for achieving Bloch oscillations, but are
not prone to the electric domain formation instabilities.
One enticing opportunity is offered by the recently intro-
duced moiré superlattices in twisted bilayer graphene, a
material that hosts electron bands that are tunable by
the twist angle[23–28]. For twist angles θ . 2◦ the moire
electron bands are considerably narrower than the opti-
cal phonon energy (∼ 200 meV), becoming as narrow as
J . 10-20 meV near “magic” values of the twist angle
θ ∼ 1◦. Such bandwidths are sufficient to eliminate the
optical phonon emission, the main obstacle to observing
coherent Bloch oscillations in wide bands.

The moiré graphene also clears other key requirements
for observing Bloch oscillations. One is weak disorder
scattering. Since the narrow bands are formed in a solid
with a pristine near-perfect atomic order, they are less
susceptible to disorder than the bands in synthetic MBE-
grown semiconductor superlattices. This is manifested
in a high carrier mobility and ballistic carrier transport
observed over micron lengthscales at T = 0[27, 28]. Es-
timating the scattering time as τ = l/vF with the mean
free path l ∼ 1µm and velocity vF of about 1/30 of the
graphene monolayer value 106 m/s gives τ ∼ 3 · 10−11s,
a value comparable to that of graphene monolayer. The
scattering rate can therefore be as low as γdis ∼ 10−2J .

Further, the two-dimensional character of moiré
graphene will help to suppress the instability towards the
formation of electric field domains that hindered exper-
iments in the stacks of quantum wells[6]. In the moiré
setup the electric current can be driven in the graphene
plane in a manner that maintains the translation invari-
ance of the system and does not cause local charging.
Indeed, gating is known to maintain a spatially uniform
carrier density even under moderate to high currents.

Other appealing properties of moiré graphene are the
lack of Zener transitions, suppressed by sizable minigaps,
and the weakness of the electron coupling to the long-
wavelength acoustic phonons[29–31]. Added to that, the
relatively large periodicity of moiré superlattices (a ∼
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FIG. 1: a) Bloch-oscillating electrons synchronized by cou-
pling to an oscillator mode. A DC electric field E drives
free-carrier oscillations with frequency ωB (wavy lines). The
oscillations are at the same frequency for all carriers but are
asynchronous (not in phase). Synchronized oscillations are
achieved through coupling to an oscillator mode, depicted by
the thin lines. b) A phase diagram showing the stable and un-
stable regimes, in which Bloch oscillations are asynchronous
and synchronized, respectively. The carrier scattering rate
γ is taken to be equal the oscillator damping rate γ0 (see
Eq.(11)); phase diagrams for unequal γ and γ0 are discussed
in [37]. The Bloch frequency ωB on the x axis is proportional
to the electric field; ω0 is the oscillator frequency, the cou-
pling strength α between each electron and the oscillator is
defined in Eq.(9). Instability is easiest to achieve when ωB is
tuned close to ω0. The flowchart on top shows the relationship
between different degrees of freedom: the DC current drives
free-carrier oscillations; being synchronized by the oscillator,
they pump energy into the oscillator (the lasing effect).

10nm) reduces the required E field values:

γ = max[γph, γdis] < ωB < J/~, ωB = eEa/~. (1)

Using moderate E fields will help to avoid the WS local-
ization effects and charge instabilities.

These expectations are supported by a detailed anal-
ysis of phonon emission in moiré bands[37], predicting
emission rates which drop upon an increase in the flat-
band width and a growing E field. Detuning away from
the magic twist angle reduces the density of states that
govern phonon emission. Likewise, an E field tunes the
WS states out of resonance, abruptly quenching phonon
emission.

Importantly, although all free carriers Bloch-oscillate
with identical frequencies, these oscillations are asyn-
chronous, as the oscillation phases are totally random
and uncorrelated for different carriers. Therefore, in
order to achieve collective continuous-wave Bloch os-
cillations driven by a direct current, the movement of
different carrier must be synchronized. We outline a
way to achieve this through coupling of the current-
carrying channel to an oscillator mode in a THz res-
onator. The resonator frequency depends on system
parameters, whereas the Bloch frequency is tunable by
varying the applied electric field. As illustrated in Fig.1,
this system develops an instability towards collective os-
cillations at a Bloch frequency when the latter is close to
the oscillator frequency. In practice, the oscillator can be
realized as a THz photonic or plasmonic resonator in a

FIG. 2: a) Geometric construction of the frequency comb for
Bloch oscillations, Eq.(2), at a generic electric field orienta-
tion relative to the superlattice. Frequencies ωl are found by
projecting the real-space Bravais lattice points (solid circles)
onto the 1D line parallel to E (black arrow) as indicated by
dashed green lines. The shortest and next-shortest vectors are
shown as red and blue dots. Hollow circles, found by projec-
tion, give the frequencies in Eq.(2), where the emitted noise
power P (ω) peaks. b) Visualization of the comb ωl angle
dependence vs. E orientation relative to the superlattice.

2D or a 3D architecture[6, 32–36]. An alternative route
to achieve synchronization is through coupling to an in-
trinsic collective mode, excitonic or plasmonic. Phase-
coherent oscillations achieved in this regime represent a
realization of electrically pumped THz lasing.

Prior to tackling the synchronization problem we sum-
marize the basic picture of the free-carrier Bloch oscilla-
tions in superlattices. The dynamics in superlattices of
dimension D ≥ 2 differs from the D = 1 case in that
different carriers can move at different angles relative
to the applied field[10, 19–22]. Despite this difference,
the main properties of the one-dimensional Bloch oscil-
lations persist. The Bloch frequencies remain discrete,
taking values identical for all carriers in the system. The
only new aspect is that different harmonics of the band
dispersion produce oscillations with several different dis-
crete frequency values. These frequencies are in general
incommensurate with one another, forming a comb-like
spectrum pictured in Figs.2 and 3.

The frequency comb dependence on the electric field
orientation with respect to the superlattice is de-
scribed by the geometric construction illustrated in Fig.2.
Namely, possible frequencies are given by the projections

of different Bravais lattice vectors al = n1a
(0)
1 + n2a

(0)
2

on the applied field E:

ωl =
e

~
E · al =

e

~
Eal cos(θ − θl) (2)

The dependence of the frequencies ωl on the field E ori-
entation and strength, as well as the tunability of moiré
superlattices by the twist angle, provide knobs that will
facilitate achieving Bloch oscillations in moiré graphene.

This result can be understood in very general terms
by considering a tight binding bandstructure on a
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FIG. 3: a) The comb-like frequency spectrum of current
fluctuations, Eq.(5), consisting of finite-width resonances at
the discrete frequency values ωl, Eq.(2); units: ωB = e

~Ea.
The field orientation and labeling of different peaks match
those in Fig.2. b) The direct-current drift velocity, Eq.(6).
Shown is the full dependence (inset) and traces for several
different field orientations. Bloch oscillations occur for field
strength E > Eγ = ~γ/ea; negative differential conductivity
dI/dV < 0 is a hallmark of this regime.

monoatomic lattice,

ε(k) =
∑

l=1,2...

−2Jl cos(k · al). (3)

The Bravais lattice vectors al describe hopping between
different pairs of lattice sites, either nearest-neighbor
or non-nearest-neighbor. Bloch-oscillating free carriers
obey quasiclassical equations of motion

~
dk

dt
= eE, (4)

generating a linear time dependence k(t) = e
~Et + k0

with the linear part identical for all carriers and a carrier-
specific initial value k0. With this bandstructure and an
electric field of a generic orientation, E = E(cos θ, sin θ),
the frequencies at which the time-dependent velocity of
the electrons v(t) = 1

~∇kε(k)|k= e
~Et+k0 will oscillate are

given by al projected on E, Eq.(2). The resulting de-
pendence of the frequencies ωl on the orientation of E is
described by families of circles pictured in Fig.2.

Physically, discrete frequency values arise because elec-
tron trajectories sweep the (reduced) Brillouin zone (BZ)
of a two-dimensional crystal in the direction set by the
E vector. Every time an electron reaches zone bound-
ary it umklapps to the opposite side and continues for-
ward, winding around the BZ at different frequencies in
different crystal axes directions. At the same time, the
average frequency along the direction of E is the same
for all carriers. This leads, for a general field orienta-
tion, to a quasiperiodic dynamics characterized by two
fundamental frequencies which depend only on the field
E and lattice periodicity as described in Eq.(2), wherein
ωl = n1ω1 + n2ω2 in agreement with the geometric con-
struction in Fig.2.

In the presence of momentum-relaxing scattering the
frequency spectrum broadens into a sum of finite-width
resonances centered at ω = ωl. The quantity of inter-
est is the autocorrelation function of current fluctuations

P (ω) = 1
2

∫∞
−∞〈δj(t) · δj(t+ τ)〉e−iωτdτ . Simple analysis

predicts a comb-like emitted power spectrum

P (ω) =
∑
l

Pl
(ω − ωl)2 + γ2

(5)

(see [37]). The Bloch oscillation regime corresponds to
non-overlapping resonances. Since the frequencies ωl are
proportional to the applied field E the oscillations ap-
pear when the field strength exceeds a threshold set by
momentum-relaxing scattering, Eγ = γ~/ea. At lower
fields the resonances merge into a broadband noise spec-
trum, indicating a suppression of the oscillations.

In the Bloch oscillation regime the DC drift velocity
exhibits negative differential conductivity dI/dV < 0, a
characteristic behavior that provides a clear signature of
this regime. A direct calculation [37] predicts

vDC =
∑
l

al
2Jlfl
~

γωl
γ2 + ω2

l

, fl =
∑
k

f0(k)eialk, (6)

with f0(k) the steady-state momentum distribution. The
dependence on the field E is linear at small E < Eγ and
falls off as 1/E at large E > Eγ . Interestingly, current
depends on the dimensionless quantity E/Eγ in a way
that is independent of the specific value of γ. This be-
havior is illustrated in Fig.3(b). The drift velocity for
electric fields in different directions is shown in the inset.

Next, we turn to the discussion of Bloch oscillations
synchronized by coupling to an oscillator mode:

H =
∑
i

[ε (pi)− eExi − αQxi]+
1

2m
P 2+

ω2
0m

2
Q2. (7)

Here ε(p) is the band dispersion, pi and xi are the mo-
menta and coordinates of the electrons; P and Q are the
momentum and amplitude of the oscillator. The Bloch
electron coupling to the oscillator and the external field
is through potentials U(xi) = −eExi − αQxi seen by
each of the electrons. In this approach we ignore the
direct carrier-carrier interactions, treating electron dy-
namics in a free-particle approximation. Bloch oscilla-
tions are driven by the electric field E, the term −αQxi
describes coupling of the electrons to the oscillator mode.
In practice the oscillator can be realized as e.g. THz pho-
tonic or plasmonic resonators[6, 32–36].

We consider the equations of motion originating from
the Hamiltonian above. We wish to integrate out the car-
rier degrees of freedom and derive a closed-form dynam-
ics for the oscillator. For that purpose we solve equations
of motion for the i-th electron beginning from the time
t′i < t when its state was last reset by scattering and the
Hamiltonian dynamics described by Eq.(7) had started.

The full set of equations of motion for the electrons
and the oscillator is

ṗi = − ∂H
∂xi

= eE + αQ(t), ẋi =
∂H

∂pi
=
∂ε (pi)

∂pi
(8)

Ṗ = −mω2
0Q+

∑
i

αxi, Q̇ = P/m.
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Eliminating P (t) yields a second-order equation of mo-
tion for the oscillator mode Q(t), driven by an external
force given by a sum of contributions due to the electrons

Q̈ (t) + ω2
0Q (t) = f(t), f(t) =

α

m

∑
i

xi(t). (9)

Importantly, the cumulative effect due to the electrons,
given by the quantity f(t), gives rise to a “memory effect”
in the oscillator dynamics. Each term in the sum

∑
i xi(t)

is given by a solution of the equations of motion for xi(t)
and pi(t), Eq.(8), initialized at an earlier random time
t′i < t. The oscillator dynamics Q(t), P (t) during the
time intervals t′i < τ < t affects the electron states xi(t),
pi(t), giving rise to a back-action f(t) = α

m

∑
i xi(t) with

the dynamical memory originating from the dependence
on Q(τ) and P (τ) at the earlier times τ < t.

The feedback due to this memory effect enables syn-
chronization of Bloch dynamics, resulting in a macro-
scopic oscillating current generated by Bloch-oscillating
electrons. To describe the instability we compute the
backaction term linearized in Q(t′) (the analysis is
lengthy but straightforward, see [37]). Substituting the
result in Eq.(9) gives a characteristic equation for ω of
the form

ω2
0 − ω2 =

iλ

ω

(
γ2

(γ2 + ω2
B)(γ − iω)

+
γ

(ω + iγ)2 − ω2
B

)
,

(10)

where we defined λ = N α2av0
m~ with N the total number

of Bloch-oscillating electrons.
The system becomes unstable when Eq.(10) admits so-

lutions in the upper halfplane of complex ω. Before ex-
ploring this instability we inspect, as a sanity check, the
regime of highly damped Bloch oscillations, γ � ωB, ω0.
In this case, Eq.(10) reads ω2

0 − ω2 = iλ
ωγ . At large

γ, the roots of this equation are close to ±ω0. Writ-
ing ω = ±ω0 + ∆ω, at leading order in 1/γ we find
∆ω = − iλ

2ω2
0γ

. Negative imaginary part indicates that

no instability arises in this regime, i.e. the driven system
is stabilized by high damping.

A very different situation occurs at weak damping
γ � ωB, ω0. The new behavior is simplest to understand
close to the resonance between the oscillator and Bloch
frequencies, ω0 ≈ ωB. For ω values near the resonance,
where the last term in Eq.(10) dominates, we can ignore
the first non-resonant term. This gives

(ω2
0 − (ω + iγ0)2)((ω + iγ)2 − ω2

B) =
iλγ

ω
. (11)

Here we added the oscillator damping rate γ0. Working
near the resonance and expanding in a small δω = ω −
ω0 � ω0 ≈ ωB to obtain the complex frequency roots
positioned near ω0, the characteristic equation becomes

(ω − ω0 + iγ0)(ω + iγ − ωB) = −iη/4, η =
λγ

ω3
0

. (12)

The properties of Eq.(12) are simplest to understand
when γ0 = γ. In this case, the roots are

ω1,2 = −iγ +
ωB + ω0 ±

√
(ωB − ω0)

2 − iη
2

(13)

The system is stable if Imω1,2 < 0 and unstable other-
wise. Using the identity

Im
(√

x− iη
)

= −sgn η

√√
x2 + η2 − x

2
(14)

with x = (ωB − ω0)2, we can write the condition for the
instability as

η2 >
(

(ωB − ω0)
2

+ 4γ2
)

16γ2. (15)

This criterion predicts the Bloch frequency ωB and the
coupling strength λ values for which an instability to-
wards a synchronized dynamics may occur, giving the
phase diagram shown in Fig.1. As expected on general
grounds, the instability is easiest to achieve when Bloch
oscillations are in resonance with the oscillator, ωB = ω0.
Tuning away from the resonance suppresses the instabil-
ity. The instability signals the onset of a collective regime
in which Bloch-oscillating electrons become synchronized
through coupling to the oscillator mode.

A wider variety of collective regimes can be achieved by
varying the oscillator damping γ0. High and low damping
values, γ0 � γ and γ0 � γ, favor synchronization and
lasing, respectively. In both cases the instability towards
collective dynamics can occur not only on the resonance
ωB ≈ ω0 but also away from it in a relatively wide range
of E fields, ωB < ω0 for synchronization and ωB > ω0 for
lasing (see [37]). We note that the lasing regime can also
be understood in terms of negative AC conductivity that
enables gain of THz radiation[5, 11–13].

An intriguing question for future work is the role of
electron interactions. Here we envision several interest-
ing regimes depending on the relation between carrier
concentration and the localization radius of WS states
r0 ∼ J/eE. At high carrier concentration, nr20 � 1, the
interactions will act to dephase the oscillations. Yet, at
low carrier concentration, nr20 � 1, the interactions will
tend to create an ordered Wigner solid of spatially lo-
calized Bloch-oscillating carriers. Ordering will stabilize
oscillations and facilitate synchronization.

Another question of interest is the effect of thermal
fluctuations and noise. While the electron temperature
under a strong direct current is expected to be high, in
the architecture considered above the temperature of an
external oscillator is naturally decoupled from that of
electrons. The oscillator will remain cold and provide a
synchronizing feedback on the electron subsystem.

In summary, the unique electronic properties of the
flat bands in moiré graphene, such as the bandwidth con-
siderably narrower than the optical phonon energy, the
∼ 10nm-large superlattice periodicity and relatively high
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mobility, will facilitate observing the Bloch oscillations.
The two-dimensional nature of the system offers addi-
tional benefits: the carriers, which are fully exposed, can
be coupled to a nearby oscillator mode that will synchro-
nize their movements to enable phase-coherent collective
oscillations, a regime in which current-pumped synchro-
nization and THz lasing can be realized and explored.
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twisted double-layer graphene. Proc. Nat. Acad. Sci. 108,
12233-12237 (2011).

[24] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken,
J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T.
Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-
Herrero, Correlated insulator behaviour at half-filling in
magic-angle graphene superlattices. Nature 556, 80-84
(2018).

[25] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi,
E. Kaxiras, and P. Jarillo-Herrero, Unconventional super-
conductivity in magic-angle graphene superlattices. Na-
ture 556, 43-50 (2018).

[26] Y. Cao, J. Y. Luo, V. Fatemi, S. Fang, J. D. Sanchez-
Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras,
and P. Jarillo-Herrero, Superlattice-Induced Insulating
States and Valley-Protected Orbits in Twisted Bilayer
Graphene. Phys. Rev. Lett. 117, 116804 (2016).

[27] Y. Kim, P. Herlinger, P. Moon, M. Koshino, T.
Taniguchi, K. Watanabe and J. H. Smet, Charge Inver-
sion and Topological Phase Transition at a Twist Angle
Induced van Hove Singularity of Bilayer Graphene, Nano
Lett. 16, 5053-5059 (2016).

[28] A. I. Berdyugin, B. Tsim, P. Kumaravadivel, S. G. Xu, A.
Ceferino, A. Knothe, R. Krishna Kumar, T. Taniguchi,
K. Watanabe, A. K. Geim, I. V. Grigorieva, V. I. Falko,
Minibands in twisted bilayer graphene probed by mag-
netic focusing, Sci. Adv. 6: eaay7838 (2020)

[29] R. Bistritzer and A. H. MacDonald, Electronic cooling in

https://arxiv.org/abs/cond-mat/0007482
https://arxiv.org/abs/cond-mat/0007482


6

graphene, Phys. Rev. Lett., 102, 206410 (2009).
[30] W. K. Tse, S. Das Sarma, Energy relaxation of hot Dirac

fermions in graphene. Phys. Rev. B. 79, 235406 (2009).
[31] J. C. W. Song, M. Y. Reizer, L. S. Levitov, Disorder-

assisted electron-phonon scattering and cooling pathways
in graphene. Phys. Rev. Lett. 109, 106602 (2012).

[32] L. Ju, et al. Graphene plasmonics for tunable terahertz
metamaterials. Nat. Nanotechnol. 6, 630643 (2011).

[33] H. Yan, et al. Tunable infrared plasmonic devices using
graphene/insulator stacks. Nat. Nanotechnol. 7, 330-334
(2012).

[34] H. Yan, et al. Infrared spectroscopy of tunable dirac ter-

ahertz magneto-plasmons in graphene. Nano. Lett. 12,
3766-3771 (2012).

[35] N. H. Tu, K. Yoshioka, S. Sasaki, M. Takamura, K.
Muraki and N. Kumada, Active spatial control of ter-
ahertz plasmons in graphene, Communications Materials
1:7 (2020).

[36] L. Ateshian, H. Choi, M. Heuck, and D. Englund, Tera-
hertz Light Sources by Electronic-Oscillator-Driven Sec-
ond Harmonic Generation in Extreme-Confinement Cav-
ities, arXiv:2009.13029

[37] Online Supplement

https://arxiv.org/pdf/2009.13029.pdf

	References

