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We create laterally large and low disorder GaAs quantum well based quantum dots that act
as small two-dimensional electron systems (2DES). We monitor tunneling of single electrons to
the dots by means of capacitance measurements and identify single electron capacitance peaks in
the addition spectrum from occupancies of one up to thousands of electrons. The data show two
remarkable phenomena in the Landau level filling factor range ν = 2 to ν = 5 in selective probing
of the edge states of the dot: (1) Coulomb blockade peaks arise from the entrance of two electrons
rather than one; (2) at and near ν = 5/2 and at fixed gate voltage, these double-height peaks appear
uniformly in magnetic field with a flux periodicity of h/2e, but they group into pairs at other filling
factors.

Coulomb repulsion dictates an increase in the amount
of energy required to add each successive electron to an
isolated quantum dot, resulting in distinct electron addi-
tions in a periodic pattern known as a Coulomb block-
ade spectrum[1–6]. Such a uniform pattern is commonly
seen in two-dimensional (2D) semiconductor quantum
dots[6, 7]. In contrast, in superconducting dots, Cooper
pairing leads to deviations from ordinary Coulomb block-
ade, producing individual peaks in the addition spec-
trum that arise from the addition of two electrons[8–10].
The ground state of a superconducting island favors even
numbers of electrons, resulting in parity-induced suppres-
sion of Coulomb blockade[11, 12] and 2e tunneling.

Here, we present results from an experiment that, sur-
prisingly, reveals 2e tunneling into edge states of large 2D
semiconductor quantum dots. Remarkably, we observe
that in the vicinity of Landau level filling factor 5/2, the
electron additions to the edge states behave identically
to the observed behavior for Cooper pairs entering a su-
perconducting dot[8], with all electrons entering as pairs,
with no additional energy cost for adding a second elec-
tron after the first. Moreover, the paired additions exist
over a wide range of filling factors (from ν = 2 to ν = 5),
but at filling factors other than 5/2, the double-additions
themselves group into pairs of double-additions.

Laterally confined two-dimensional (2D) quantum dots
provide a simple system to study confined electrons and
their interactions[6, 13–15]. However, conventional trans-
port measurements on lateral quantum dots function by
passing a current through them and can only detect de-
localized electronic states[7], although recent RF tech-
niques show sensitivity to localized charge pockets near
the confining gates[16]. Here, we instead utilize a ver-
tical tunneling geometry that eliminates lateral contacts
and allows us to track electron additions to both local-
ized and extended states starting from the first addition
up to thousands of electrons over a wide range of mag-
netic field[4, 17]. We have also developed a sample de-

sign to create quantum well-based large QDs with very
low disorder. The dot is confined between two electrodes
in the “tunnel capacitor” structure shown schematically
in Figs. 1a and 1b. Unlike previous work, the structure
does not contain any modulation doping[18] nor a Schot-
tky barrier above the dot but instead requires creation of
a small ohmic contact, comparable to the dot size, to the
tunneling electrode above the dot. For this new design,
we observe features associated with higher sample quality
such as a considerably sharpened capacitance step upon
adding charge to large QDs and the observed absence of
states from silicon impurities in or near the QD[17].

We detect electron additions as peaks in the capaci-
tance of this tunnel capacitor using a capacitance bridge
technique in which we balance the QD against a known
reference capacitor[17]. When a single electron tunnels
from the tunnel electrode to the quantum dot, image
charge accumulates on the opposite electrode. Using
a low temperature transistor charge amplifier, we read
out the voltage created by this image charge to find the
capacitance change[17]. The gate voltages for the ob-
served capacitance directly reflect the ground state ener-
gies of the quantum dot containing different numbers of
electrons[4, 6, 17]. Previously, these and other electron
addition spectroscopy measurements of quantum dots
showed well-defined transitions into the integer quantum
Hall states.[14, 15, 19, 20].

To illustrate the functioning of the capacitance
method, we first show data in Figs. 1c and 1d from a small
dot (∼ 120 nm) that does not show the pairing effect and
follows standard “artificial atom” physics[6, 13]. Electron
additions occur periodically in gate voltage with a period
of roughly e/Cg, where Cg is the capacitance between
the gate and the dot. After each electron is added to the
dot, adding a successive electron requires increased gate
voltage due to Coulomb repulsion[2–5]. Fig. 1d presents
capacitance data taken from a small dot in a dilution re-
frigerator with a base temperature of 45 mK. These data
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FIG. 1. Electron additions in a small 2D quantum dot. (a)
The quantum dot is confined between two electrodes, one of
which (tunneling electrode) is tunnel coupled to the dot. The
carrier concentration can be tuned by the gate electrode. (b)
Schematic of the sample design with a small metallic island
(dot) that is tunnel coupled to a reservoir and capacitively
coupled to the bottom electrode. (c) Isolated electron ad-
ditions as a function of gate voltage. The spacing between
successive capacitance peaks largely reflects the additional en-
ergy required to overcome the Coulomb repulsion of the elec-
trons already in the dot. The heights of the single-electron
capacitance peaks in this trace are typical of those measured
throughout the experiment. (d) Single electron capacitance
peaks (bright curves) in a small quantum dot as a function of
external magnetic field and gate voltage.

show electron additions from N = 1 to N = 20 under
an external perpendicular magnetic field, displaying fea-
tures that fit with a model of a small quantum dot with a
parabolic confining potential[21, 22]. As the gate voltage
is swept on the y-axis, capacitance peaks appear for every
electron that enters the dot. Note that the lateral extent
of electrons in the dot gradually increases with electron
number, decreasing the observed spacing[4]. The blue
line shows the density and field at which all electrons oc-
cupy spin-degenerate states belonging to the lowest or-
bital Landau level (ν = 2 in a 2DES).

The “zig-zags” in the evolution of the single-particle
peaks with magnetic field (red box in Fig. 1) indicate
crossings of energies of single-particle states. As the mag-
netic field increases, the energies of the edge states move
down relative to those of the bulk states since their or-
bital magnetic moment is aligned with the field[6]. At the
crossovers of different states, the descending energy of an
electronic edge state falls below the ascending energy of
a filled bulk state. Consequently, the peak position is
expected to zig and zag as the highest-energy electron in
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FIG. 2. Electron additions in a large quantum dot. Brighter
regions correspond to higher capacitance. (a) Under a per-
pendicular magnetic field, the 2DES forms Landau levels, pro-
ducing dips in the capacitance corresponding to each integer
filling factor. There are roughly two thousand electron addi-
tions in the voltage range shown. (b) States with negative
slope, corresponding to edge states, near ν = 5/2. The broad
horizontal lines may correspond to states under the gate re-
gion but outside of the dot itself. (c) Localized states in the
Landau gap follow the underlying filling factor. States in the
center and the top left of the figure track ν = 1 and ν = 2,
respectively. The states that are nearly parallel to the field
axis are the first few electrons added to the dot in isolated
localized states, as in [23]. (d) Capacitance peaks of the first
few electrons added to the dot as a function of magnetic field.

the dot moves from one state to another. The zig-zag be-
havior ends when all electrons fall into the lowest Landau
level, at filling factor ν = 2.

Increasing the dot area by an order of magnitude,
we observe effectively quantum Hall physics in com-
parison to “artificial atom” physics[6, 13] that we have
shown in Fig. 1. For large dot sizes, self-consistent
calculations[24, 25] (see supplementary figure S10) show
that the electron density remains nearly uniform over
most of the interior of the dot and only diminishes near
the dot edges. Under the presence of an external mag-
netic field, electrons in the mini-2DES develop Landau
levels. Fig. 2 shows capacitance data from a large dot
with a lithographic diameter of 800 nm. Fig. 2a shows
data from rastering the gate voltage scan and stepping
through a wide range of magnetic fields and subtracting
offsets from drifts in the measurement. Electrons start
to populate the dot at around Vgate = −0.1 V. In Fig.
2a, the darker regions correspond to fully filled incom-
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pressible states whereas the lighter regions correspond to
partially filled compressible states. The data display a
clear “Landau fan,” indicated by black lines.

In Fig. 2d, the first electron addition to the dot ap-
pears at −0.094 V at zero magnetic field. The positions of
all electron addition peaks evolve with nearly zero slope
at small magnetic field. The slope increases with field
until the traces appear as nearly straight lines at high
fields with slope h̄ωc/2B (where ωc is the cyclotron fre-
quency) as would be expected for spatially isolated local-
ized states with a diamagnetic shift due to applied mag-
netic field[17]. The data are taken with a small 200 µV
rms excitation at 247 kHz, a frequency sufficiently lower
than the tunneling rate so that the electrons tunnel in
and out of the dot in phase with the applied excitation.

As more electrons are added to the dot, the charges
from different localized states merge to create a single
small “droplet” 2DES. As the droplet expands laterally,
its capacitance to the surroundings increases, decreasing
the charging energy for subsequent electron additions un-
til we lose the ability to resolve individual capacitance
peaks around zero B-field.

Fig. 2 shows two distinct groups of interaction-driven
localized states that appear at filling factors ν = 1 and
ν = 2. These localized states follow the slopes of the un-
derlying Landau levels and appear only when the Landau
level is fully filled. Screening of the electrostatic potential
arising from disorder depends sensitively on the Landau
level filling factor[24, 26, 27]; a partially filled level signif-
icantly screens the disorder potential but, around integer
ν, the electronic density of states is small and the disor-
der potential is poorly screened, leading to compressible
charge pockets separated by incompressible barriers. In
Fig. 2c, the peaks that run parallel to integer ν arise from
electron additions to these pockets[23, 24, 28].

Similar peaks appear around every well-developed in-
teger quantum Hall state as also appeared in previous
work studying a 2DES gated by a local scanning single
electron transistor (SET)[23]. The charging peaks in that
work arose from electrons moving laterally within a very
large 2DES to fill individual localized compressible is-
lands in an otherwise incompressible region. In contrast,
charge quantization always occurs in our lithographically
defined quantum dots, allowing us to observe single elec-
tron additions into both compressible and incompressible
regimes. This capability led us to observe a remarkable
series of periodic electron additions that appear in the
compressible regions.

We now focus on performing fine measurements in
compressible regions with very large numbers (∼ 2000)
of electrons in the dot. In Fig. 2b, we observe states
that are evenly spaced in magnetic field. Unlike the elec-
tron additions in a small quantum dot (Fig. 1d) where
the electron addition peaks show zig-zags, the spectra
show only uniform straight lines. The energies of these
states all move down with increasing magnetic field, as

would be expected only for electronic states at the edge
of the mini-2DES[6]. This highly uniform spacing and
downward movement of all observed states suggest that
the edge of the 2DES remains “compact,” with all angu-
lar momentum states filled. This is the situation that is
sometimes expected at filling factor ν = 1[14, 20, 29] in
a “maximum density droplet”[29] (MDD) with no “edge
state reconstructions”[30] occuring in the range of these
data sets. In the case of such a ν = 1 MDD, one would
expect a single electron addition for each additional mag-
netic flux quantum h/e threading the dot. We note that
our data at these densities and filling factors do not dis-
play all electron additions to the dot. In a large-area
2D electron system, tunneling from a 3D electrode into
the bulk of the 2D system is suppressed exponentially by
a magnetic field-induced Coulomb gap[31, 32]. In con-
trast, there is only power-law suppression for tunneling
into edge states[33], and electrons tunneling to the edge
still do so at short time scales compared to the inverse
frequencies of the AC excitations in our measurements.
At fixed gate bias, electrons enter the dot as we increase
magnetic field, but charge balance can be maintained as
electrons not visible to the experiment tunnel out of the
center of the dot to the tunneling electrode (see supple-
ment for simulations showing the small variation of the
total number of electrons in the dot with varying mag-
netic field).

In Fig. 3, we plot the comparison between the edge
states near ν = 3/2 and those near ν = 5/2. Edge state
lines correspond to constant flux, with one flux quantum
difference between each constant flux line. The period-
icity of electron peaks in field and gate voltage is halved
at ν = 5/2 as compared to ν = 3/2. To illustrate this,
we performed Fourier analysis of two regions, plotted in
Fig. 3c. The periodicity in magnetic field when the fill-
ing factor is ν < 2 (blue curve) is ∆B = 13 mT. This
yields a dot area of 0.55 µm2, close to what is expected
in our simulations (see supplementary figure S10). How-
ever, when the filling factor is tuned to near ν = 5/2
(red curve), we observe a doubling of the electron peak
frequency compared to the situation at ν = 3/2.

In capacitance measurements, the capacitance peak
height reflects the amount of tunneling charge[17]. In
Fig. 4a, we compare the peaks of isolated first electrons
(blue curve) to those of edge states near filling factor
ν = 5/2 (red curve) and find, remarkably, that they
arise from the charge of two electrons tunneling back and
forth across the barrier (see supplement). These double-
electron additions contradict the prediction of Coulomb
blockade theory[2, 3, 5] that more energy is required to
add each successive electron to a quantum dot as a result
of electron repulsion. While prior measurements on more
disordered dots at lower densities also showed a violation
of Coulomb blockade with pairing and bunching of elec-
tron addition peaks[17, 19, 34, 35], the current results
differ in that all observed electron additions, over nearly
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FIG. 3. Electron addition spectra in the N = 0 versus the
N = 1 Landau level. (a) Capacitance data taken as a function
of gate voltage and magnetic field in the Φ0 = h/e regime.
The filling factor is near ν = 3/2. (b) When the gate voltage
is tuned to near filling factor ν = 5/2, the periodicity in mag-
netic field is halved. (c) Corresponding Fourier transforms
of two different regions as a function of Φ0/∆B. The blue
and red curves are the Fourier transforms near ν = 3/2 and
ν = 5/2, respectively.

the entire range of ν between integer values of ν, occur
as pairs. They thus appear more similar to pairing phe-
nomena observed in charging superconducting islands[8–
10], where ground states of even and odd numbers of
electrons have energies differing by the superconducting
gap, resulting in parity-induced suppression of Coulomb
blockade[11, 12].

Another surprising observation is that the double-
electron peaks themselves bunch together at all filling
factors between ν = 2 and ν = 5 with the only clear ex-
ception at ν = 5/2, where the peaks are evenly spaced.
Beyond ν = 5, the peaks become difficult to discern. Fig.
4b demonstrates this bunching, presenting data taken
with a 100 µV rms excitation. In Fig. S8, we provide data
similar to that shown in Fig. 4b but over a broad filling
factor range including ν = 5/2. Similar behaviors, such
as the h/2e periodicity, bunching phenomena, and local-
ized states, all occur in another dot with a lithographic
area of 0.325 µm2.

Our results may have a connection to a different type
of experiment[36, 37] performed on a Fabry-Perot inter-
ferometer (FPI) fabricated on a 2DES confined by two
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FIG. 4. Double-height peaks in the N = 1 Landau level and
bunching of paired peaks away from filling factor ν = 5/2.
(a) Electron charge comparison between the first electrons
and the paired electrons. The blue curve (first electrons) is
centered at a bias voltage of −0.0795 V, and the red curve
(paired electrons) at 0.3655 V. (b) High magnetic field reso-
lution measurement showing bunched pairs. The AC excita-
tion is 100 µV rms. The filling factor ranges from ν = 2.9 at
6.25 T to ν = 2.83 at 6.40 T. As this scan is close to ν = 3,
notice that two localized states appear with positive slope.
However, the localized states do not appear to interact with
the edge states at all.

quantum point contacts. Allowing only the outermost
edge channel through the QPCs, the FPI should occur
with period h/e for single electron orbits. The FPI ex-
periment displays this predicted behavior between filling
factors ν = 1 and ν = 2, but the periodicity in mag-
netic field is halved between ν = 5/2 and ν = 5, yielding
h/2e oscillations (in contrast with 2e flux quantum be-
tween ν = 2 and ν = 5 in our experiment), with quantum
shot noise measurements also suggesting a quasiparticle
charge of 2e rather than e[36]. Shot noise measurements
result from out-of-equilibrium tunneling events, but the
two-electron additions in our experiment, existing in the
limit of small excitation drive, take place in thermody-
namic equilibrium. Moreover, while the FPI data reveal
a mechanism that binds two electrons together as they
encircle the FPI, our results now show that the energetics
of this binding is sufficiently strong to produce violation
of Coulomb blockade. Finally, our data (see supplement
and Figs. S8 and S9) appear to demonstrate that each of
the two electrons in a pairing enters a single edge state,
and alternate pairs in a two-pair bunch enter different
edge states.

The observed tunneling into the edge states shows no
sign of decreased tunneling rate that would appear as
phase shifts in the charging response. “Negative-U” mod-
els, involving sequential tunneling and rearrangements of
the electronic system in the bulk[38, 39] or at the edge[40]
of a 2D system, place two peaks at the same gate volt-
age. However, such models would result in diminished
tunneling rates in our experiment. To have two electrons
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tunneling back and forth between the dot and the tun-
neling electrode at the exact same gate voltage, the first
electron in a pair must first tunnel into the dot with less
than the required energy ∆E to produce the rearrange-
ment. Therefore the second electron in the pair must tun-
nel into the dot at a rate that is fast compared to ∆E/h̄
(∼ 1011 s−1 for the ≈ 0.4 meV energy barrier as seen
from the gate voltage spacing of single electron peaks).
As tunneling rates in our dots from the tunneling elec-
trode are on the order of 106 s−1, such negative-U models
cannot explain our data. Another possibility would then
be an effective zero repulsion between electrons in a pair,
but we know of no model for this. The answer may lie
in coherent tunneling of the two electrons. For instance,
in tunneling to superconducting islands from a normal
metal electrode[10], the tunneling rate is enhanced due
to Andreev processes compared with the suppressed inco-
herent tunneling of two electrons[12]. Indeed, the occu-
pancy of uniform (unbunched) pairs occurring only very
near ν = 5/2 may suggest such coherent tunneling could
have a connection with the 5/2 fractional quantum Hall
state where theory describes a potential Cooper pairing
of composite fermions[41]. As discussed in the Supple-
mental Material, more sophisticated time-domain pulsed
capacitance measurements[42] could provide further in-
formation regarding the microscopic origins of the ob-
served pairing and bunching effects.
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