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Negative stacking fault energies (SFEs) are found in face-centered cubic high-entropy alloys with
excellent mechanical properties, especially at low temperatures. Their roles remain elusive due to
the lack of in situ observation of nanoscale deformation. Here the polymorphism of Shockley partials
is fully explored, assisted by a new method. We show negative SFEs result in novel partial pairs as
if they were in hexagonal close-packed alloys. The associated yield stresses are much higher than
other mechanisms at low temperatures. This generalizes the physical picture for all negative-SFE
alloys.

Low to negative stacking fault energies (SFEs) are
frequently found for high-entropy alloys (HEAs) in the-
ory, particularly for the alloys with excellent mechanical
properties, such as CoCrFeNiMn [1–4] and CoCrNi [5–
9]. Negative SFEs are difficult to be identified in ex-
periment, but their existence is indicated by the rich
twin and various close-packed nanostructures [10]. In
theory, Ising models connect the negative SFE with the
lower energy of hexagonal close-packed (hcp) structure
relative to face-centered cubic (fcc) [11]. For example,
the hcp Cantor alloy (CoCrFeNiMn) is indeed thermo-
dynamically more stable than the fcc one at cryogenic
temperatures [12]. Alloys are usually synthesized at high
temperatures when fcc structure is more stable than hcp,
and then quenched down to room or cryogenic tempera-
tures when the stability is probably reversed. The phase
transition from fcc to hcp can be kinetically too slow to
see. However, the hcp phases under high pressures indeed
formed and retained in CoCrFeNiMn [13, 14] and CoCr-
FeNi [15] even when the pressures were removed. It is
widely acknowledged that low to negative SFEs usually
result in wide stacking faults (SFs) and large distance
between partial dislocations. The mechanical implica-
tions of low SFE have been studied [16, 17], but those of
negative SFE are still elusive and urgently need further
experimental [18] and theoretical explorations. Partial
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dislocations can shape the microstructure and mechani-
cal properties of fcc materials. The abundant Shockley
partials and their polymorphism in these HEAs request
all intrinsic geometric freedoms for a complete descrip-
tion of dislocation geometry. Here we propose a new no-
tation system that can unambiguously describe all possi-
ble dislocation geometries. Assisted by it, our theoretical
analysis shows large width of SFs is not the only effect of
negative SFEs, but one of them. The other consequences
include a novel dislocation geometry similar to a dissoci-
ated dislocation in hcp structure (Figure 1c-d, Case C),
where the two partials switch their positions in Case O.
It is similar to the Lomer-Cottrell lock but with partials
on the same slip plane. The special situation of Case C,
i.e., when the coupled partials are far away, is profuse
in fcc materials with negative SFEs including HEAs. It
is fundamentally interesting to check whether this new
mechanism plays a role in the excellent mechanical prop-
erties of HEAs. This mechanistic study is based on a
new density functional theory (DFT)-informed multiple-
equal-fraction-dislocation (MEFD) formulation [19] and
two solute solution strengthening models [16, 17].

Full exploration for novel dislocation geometry
by a new notation system The extremely plentiful
configurations of the partials are exemplified by CoCrNi
[20, 21], CoCrFeNiMn [20] and Al0.1CoCrFeNi [22] in
Figure 1a. Their geometries cannot be definitely de-
scribed by Burgers vector only, where the positions of
SFs relative to the partials are ignored. This text-book
notation system works well for alloys of positive SFEs,
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FIG. 1: Full exploration for novel dislocation geometry by a new notation system. a, Nanoscale close-packed stackings formed by
partial dislocation motions are exemplified by CoCrNi [20, 21], CoCrFeNiMn [20] and Al0.1CoCrFeNi [22]. The profuse partials
are highlighted. b, The new notation system and its comparison with the text-book notion. c, Four possible configurations
of Shockley partials in fcc concentrated alloys. The blue arrows indicate the Burgers vectors of Shockley partials. d, The
configurations of Case C and Case O are illustrated with atomic resolution.

since the relative positions of two partials and one SF
are always well defined. Problems arise when partials are
abundant and unbound when SFEs are extremely low to
negative. There are three intrinsic geometric freedoms
needed for a definite description of arbitrary number of

partials: (i) Burgers vectors ~bi; (ii) line directions ~si; and
(iii) the position of partials relative to SFs. The choice
of Burgers vectors is described by the Thompson’s tetra-
hedron; the line direction is in principle arbitrary if sym-
metry permits; both can be clearly described by the text-
book notation system. However the relative positions of
the partials is not defined, which is indispensable for al-
loys with negative SFEs.

A new notation system is proposed here for a complete
description of the extremely diverse dislocation geome-
tries (Figure 1b). The new symbol combines the Burgers
vector of a partial and the SF position. For example,

when a SF is to the right of the partial ~b1, we denote

it by ~b∗1, ~b∗1 = ~b1 +SF; when it is to the left, ∗~b1 = SF

+ ~b1. The properties of the new notation system and
its applications to describe cases in Figure 1c and be-
yond are referred to the supplementary material. The
new system considers all intrinsic geometric freedoms in
a simple manner, but the impact is profound. It is useful
to describe more complex geometry, where three or more
partial dislocations are involved. The line direction ~s is
arbitrary in theory. A general discussion of arbitrary di-
rections is straightforward but outside the scope of this
work. Here we only consider the two partials with the
same line direction.

The new building blocks of starred Burgers vectors

(partials) double in number, which greatly increases the
possibilities of combinations of partials. We can mechan-
ically play the building blocks to find new geometry and
then check if they can be a new mechanism with physi-
cal meaning. Arguably the most easy way to find a new
geometry is to switch the positions of partials in known
configurations. For example, we can switch the two par-
tials in Case A, which results in Case C (Figure 1c). This
is similar to a dissociated dislocation in hcp structure,
which can exist in alloys with negative SFEs. As a new
type of dislocation geometry in fcc, it provides the basis
to understand deformation behavior.
The broken equilibrium: Case O In the clas-

sic Case O, three forces determine the distance between
the two Shockley partials, i.e., the interactions of edge
components Fe(x), screw components Fs(x) and the at-

tractive force through SFEs Fγ(x). Assuming ~b∗1, ∗~b2
are the Burgers vectors of the two partial dislocations,
~s is the line direction of the whole dislocation, G is

the shear modulus along the Burgers vector ~b of the
whole dislocation, ν is the Poison ratio, we have Fe =

G
2π(1−ν)

1
x (~b∗1×~s)(∗~b2×~s) > 0, Fs = G

2π
1
x (~b∗1 ·~s)(∗~b2 ·~s) < 0,

and Fγ = −xγ0 < 0. Here γ0 represents the SFE. The
equilibrium distance x0 is calculated by

Fe(x0) + Fs(x0) + Fγ(x0) = 0. (1)

When the SFE is negative, i.e., Fγ = −xγ0 > 0, the
force associated with SFE becomes repulsive and has the
same sign as Fe. The equilibrium of Eq. 1 is however bro-
ken. The only attractive force Fs from the screw com-
ponents is smaller than Fe let alone there is an extra
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repulsive force term from SFE. The total force is thus

Fe(x) + Fs(x) + Fγ(x) > 0. (2)

Obviously there is no solution for x. We will confirm
this information again from the numerical solution of one
revised Peierls-Nabarro model.

When Shockley partials are profuse, it is also possible
that one of the partials has a pure screw character. For
example, when the right partial is purely screw with SF

to its left (∗~b3), Fe = 0, we can find a new equilibrium dis-
tance x0 = −Fs/γ0. An equivalent case is the left partial
is a screw dislocation, which yields the same equilibrium
distance. Here we focus on a special case, i.e., when the
two partials have mixed characters but meet each other
from an opposite direction.

The new equilibrium: Case C The huge amount
of partials may meet each other and form new couples
in the configuration of Case C (Figure 1c-d, Case C),

which can be expressed by ∗~b1 + ~b∗2 =∗ ~b∗. The config-
uration of Case C is similar to the dissociated basal 〈a〉
dislocation on the basal plane in hcp if the principle of
nearsightedness is adopted. Transforming the Case C in
fcc into the hcp basal 〈a〉 dislocation where the bulk hcp
energy as the new zero energy reference, we again have
a positive SFE and the associated force Fγ = −xγ0 < 0.

The new equilibrium distance would be x0 = Gb
γ0

b
24π

2+ν
1−ν

(consequence of Eq. 1). Different from Case O, here
the shear modulus G and Poisson ratio ν of hcp rather
than fcc are needed, assuming that a dislocation can only
feel the interactions of its nearest-neighbor layers. This
assumption has been adopted for dislocation-solution in-
teractions [26, 27]. Poisson ratios of both hcp and fcc
structures are stably close to 0.3, particularly for the ma-
terials with the same constitutions and crystal structures.
With the above preparation Case C in fcc materials can
be transformed into Case O in hcp ones. The great ad-
vantage of this transformation is, (i) the minus sign of
SFE can be dropped and (ii) the dislocation geometry of
Case C can be evaluated by classic dislocation theory.

Higher yield stresses in Case C indicated by
GSFEs Generalized SFE (GSFE) is a very useful con-
cept associated with SFE that provides insights into the
mechanical properties. Accurate GSFEs are calculated
by DFT (Figure 2), which can be used to fit the five-
point γ surface [28] or its simplified two-point expression,
γ(x) = γ0 sin2(πx) + (γu − γ0/2) sin2(2πx), where γ0, γu
are the stable and unstable SFEs. This expression can be
easily used to evaluate the effect of SFE on dislocation
geometry and strengthening. Also the shear modulus can
be well evaluated by the slops of GSFE curves, which are
substantially different for hcp and fcc [12]. For Case O,
a Shockley partial has to overcome the barrier along the
direction x = 0 to 1/4; while for Case C, a larger barrier
of the reversed direction has to be overcome. The GSFE
curves of hcp and fcc show that the ”valley” is deeper for
hcp partials than fcc one (arrows in Figure 2), indicating
a larger CRSS of Case C than Case O.

The γ surface or GSFE curve is reconstructed for Case
C. Two steps are needed: (i) drop the minus sign of SFE;
(ii) add SFE to the unstable SFEs γu. Step (i) is based
on ANNNI models, which state the SFEs for intrinsic SF
I1 in hcp [29] and the intrinsic SF in fcc are

γhcp ≈ −4J1 + 4J2 − 4J3 ≈ −4J1 − 4J3, (3a)

γfcc ≈ 4J1 + 4J3 ≈ −γhcp. (3b)

The extensive data of Hu et al. shows J2 is about
J1/10 to J1/3 [30]. As a reasonable approximation,
γhcp ≈ −γfcc. This results in two coupled correspon-
dences, i.e., (i) negative SFE in hcp corresponds to a
positive one in fcc and (ii) negative SFE in fcc corre-
sponds to a positive one in hcp. The above idea allows
us to treat a fcc problem with a negative SFE as a hcp
one with a positive SFE. This finding directly attributes
the different yield stresses of Cases O and C to the dif-
ferent shear moduli of fcc and hcp phases.
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CoCrFeNi CoCrFeNiMn
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FIG. 2: The minimum energy paths (MEPs) for dislocation
motions. a MEPs of GSFEs for CoCrFeNi (left) and b CoCr-
FeNiMn (right). The insets in (a) illustrate the atomic ar-
rangements before and after Shockley partial glides, the ge-
ometries of which are the same for CoCrFeNiMn albeit with
different atomic occupations. For both alloys the maximum
shear stress in Case C (right slope, dashed line in yellow) is
larger than in Case O (left slope, dashed line in black), indi-
cating a higher yield stress of Case C than the classic one.

Dislocation geometry by MEFD calculations It
is not convenient to simulate the atomic structure of Case
C using atomistic simulations or DFT, since the fcc ma-
trix is less stable than hcp at zero K. We use a revised
Peierls-Nabarro model with the MEFD formulation for
this purpose. The most important input for the model
is the γ surface introduced in the preceding section. The
MEFD formulation is used to solve the equation [19],
which has been successfully used to study Mg [19], HEAs
[33] and two-dimensional materials [34]. A total of seven
parameters are optimized using the Particle Swarm Op-
timization (PSO) algorithm [11, 28, 35] that have been
implemented in DIST toolkit [36].

Figure 3 shows the optimized dislocation core geome-
try using DFT-computed GSFEs and elastic constants.
The core structures in the new Case C are different from
that in the classic Case O, due to the dominant attractive
interaction between partials. In Case O, the interaction
is either negligible or repulsive. The geometric difference
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is more significant in Cantor alloy than in CoCrFeNi. For
Cantor alloy, the half-width w of each partial in Case C is
slightly wider than that in Case O. The equilibrium dis-
tance between partials for both alloys in Case C is about
8.5 Burgers vector; while for Case O, the distance is the-
oretically infinite, consistent with the classic analytical
model.
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FIG. 3: The dislocation cores computed by a revised Peierls-
Nabarro model. Both the classic (a,c) and new (b,d) con-
figurations of Shockley partials in the Cantor and CoCrFeNi
alloys are calculated. The partial distance of the classic con-
figuration (Case O) is theoretically infinite, which is reset as
10b for better visualization.

Mechanical consequences of the novel mecha-
nism and magnetic states The GSFE curves indicate
Case C has a higher CRSS than the classic Case O. Here
we directly evaluate their mobility using two widely ac-
cepted models. The influence of magnetic states, which
are sensitive to the local arrangements of the close-packed
planes, is also discussed. Okamoto et al. [17] found that
the yield stress normalized by shear modulus G for a
given alloy follows a rule σy/G = k· MSAD1/2, where
k ≈ 1.3×10−3 MPa/pm for fcc HEAs, and MSAD repre-
sents the mean square atomic displacement. The rule can
be recast into σy/(k· MSAD1/2) = G. For different cases
(O, C) and different magnetic states, G or equivalently
σy/(k· MSAD1/2) is different. Computational details are
referred to the supplementary material. The shear mod-
uli G are calculated by bulk moduli and a Poisson ratio
of 0.3. The rescaled yield stresses σy/(k· MSAD1/2) for
the 6 different situations are shown in Figure 4. The
magnetic states substantially change the rescaled yield
stresses in both Cases O and C. The most significant
feature is that Case C (A2,B2,C2) offers a much higher
yield stresses than Case O (A1,B1,C1) for the Cantor al-
loy; while the experimental value lies in between. In con-
trast, the yield stresses for the CoCrFeNi alloy in Cases O
and C are less different and comparable to the influence
of the magnetic states. The strengthening effect of mag-
netism was discussed [20]. Here we directly quantified

the its effect on yield stresses.
We consider a special situation of Case C when the

two partials are far away, which is profuse in experiment
(Figure 1a). The temperature-dependent yield stresses
are calculated for the new mechanism (Case C) in two
HEAs (Figure 4) using the Varvenne model [16]. The
new mechanism indeed provides a much larger yield stress
than the classic mechanism (Case O) for CoCrFeNiMn.
At cryogenic temperatures, a 50% higher yield stress is
predicted for Case C (paramagnetic state), which bet-
ter agrees with the experimental measurement for the
alloy. This gives another effect induced by the negative
SFEs in the HEA, which is intrinsic to the new Shock-
ley pairs. The yield stress is more affected by the dif-
ferent mechanisms but also substantially tuned by the
magnetic states. For example, the yield stress of param-
agnetic state is larger than the other two states in Case
C. In contrast, the variance of yield stress due to the
new mechanism is comparable to the magnetic states for
CoCrFeNi. Further experimental investigations on the
probability or density of the new configuration (Case C)
are still needed.

a

CoCrFeNi

CoCrFeNiMn

CoCrFeNiMn

CoCrFeNi

b

c d

FIG. 4: The mechanical consequences of the new mechanism.
The magnetic-state dependent yield stresses for the new and
classic configurations of dislocations, i.e., yield stresses at zero
K (a-b) and at finite temperatures (c-d). The letters rep-
resent magnetic states and numbers are for different cases
(O/C). A: Ferrimagnetic, B: Antiferromagnetic, C: Paramag-
netic; 1-Case O; 2-Case C. Both measured yield stresses (dots)
and calculated ones using experimental elastic constants (yel-
low line, exp.) are presented.

In summary, we fully explore the geometric and me-
chanical implications of negative SFEs in high-entropy
alloys and add fundamentally new ingredients to under-
stand their excellent mechanical properties. We identify
a new dislocation geometry assisted by a notation sys-
tem invented here. The new configuration of Shockley
partials and its special case are expected to be found
for all alloys with negative SFEs, which are systemati-
cally studied using state-of-the-art DFT simulations and
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multi-scale models, and compared with available exper-
imental measurements. The new dislocation geometry
results in a higher yield stress at cryogenic temperatures
than the traditional mechanisms for CoCrFeNiMn and
agrees better with the experiment, which can be acti-
vated below the cross-over temperature of the fcc and hcp
free energies. The interplay between the new mechanism
and various magnetic states of atoms is directly eval-
uated, showing that magnetism can substantially tune
the magnitudes of yield stresses. In addition to yielding,
other mechanical consequences are also discussed. Our
study demonstrates negative SFEs provide a new group
of mechanisms, in addition to the known effects, such as
wide SFs. This generalizes the physical picture and lays

the foundation for the design of all novel negative-SFE
alloys.
Note: The supplementary material include Refs. [11,
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