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Quantum harmonic oscillators are central to many modern quantum technologies. We introduce
a method to determine the frequency noise spectrum of oscillator modes through coupling them to a
qubit with continuously driven qubit-state-dependent displacements. We reconstruct the noise spec-
trum using a series of different drive phase and amplitude modulation patterns in conjunction with
a data-fusion routine based on convex-optimization. We apply the technique to the identification of
intrinsic noise in the motional frequency of a single trapped ion with sensitivity to fluctuations at
the sub-Hz level in a spectral range from quasi-DC up to 50 kHz.

Harmonic oscillators and their quantized excitations
play a crucial role in many quantum systems relevant
to quantum information processing. In trapped-ion [1–
4], many superconducting [5–8] and also electron spin-
based [9] architectures they mediate qubit-qubit interac-
tions in the form of motional modes carrying phonons or
microwave resonators storing photons, respectively. Op-
tomechanical coupling between the quantum motion of
micro-resonators and photons may also be utilized as
a universal transducer between stationary and optical
qubits [10]. Furthermore, in both trapped ion and su-
perconducting platforms the oscillators themselves have
recently been used to realize a logical qubit encoded in
coherent superposition states [11, 12] allowing for an ef-
ficient implementation of a bosonic quantum error cor-
recting code [13]. In these systems, oscillator frequency
fluctuations are often a limiting error source, degrading
the mediated interactions and encoded bosonic states.
Such fluctuations have been probed in trapped ions us-
ing coherent displacements [14, 15] and large superpo-
sitions of number states [15, 16]. Noise spectroscopy of
the oscillator system can identify performance-limiting
error sources, assess their relative weights, and inform ap-
propriately tailored error-mitigation strategies through
quantum control engineering [17].

In this Letter, we experimentally demonstrate a
method for the spectrally-resolved sensing of harmonic
oscillator frequency fluctuations that is based on the in-
terference of cat states [18]. Deterministic generation
of oscillator cat states has been demonstrated in a va-
riety of systems [19–23] and interference of the oscilla-
tor wavepackets has previously been applied to single
photon detection [24]. Here, we apply a continuously-
driven qubit-state-dependent displacement to the mo-
tional wavepacket of a single trapped ion, while inverting
the drive phase at regular intervals to tune the proto-
col’s peak sensitivity in frequency space. We combine
this phase modulation with a shaped amplitude envelope
defined by band-limited Slepian functions [25–27] to sup-
press spurious signatures arising from spectral leakage at

harmonics of the peak sensitivity. The modulation pat-
tern and pulse shape of the driving field translate to a
filter transfer function in frequency space [28, 29] spe-
cific to each sensing sequence. Combining these with
measurement results via a convex-optimization routine,
we quantitatively reconstruct the noise spectrum. Our
experiments using a single 171Yb+ ion reveal previously
unidentified narrowband spectral noise features on a ra-
dial mode which we probe with sensitivity to shifts in the
mode frequency at the ∼ 0.5 Hz level [30].

A bichromatic light field with frequency components
symmetrically detuned from the red and blue motional
sideband transitions couples the ion’s internal state to
the oscillator mode, via an interaction described by

Ĥ(t) =
1

2
~ηΩ(t)σ̂x

(
e−i[δt+φ(t)]â† + ei[δt+φ(t)]â

)
, (1)

with Lamb-Dicke factor η, Rabi frequency Ω(t) and Pauli
operator σ̂x acting on the ion’s internal state. The ion-
oscillator coupling is captured by the creation and annihi-
lation operators â†, â and the time-dependent exponen-
tial that includes the angular frequency difference δ (de-
tuning) of the bichromatic field from the mode resonance,
as well as the phase difference φ(t) = (φb(t)− φr(t))/2
between the two frequency components (blue and red).

The fundamental principle of the noise-sensing proto-
col is illustrated in Fig. 1(a), using a phase space repre-
sentation of an oscillator co-rotating reference frame. Ini-
tially, the ion’s internal state encoding a qubit is prepared
in |0〉 and the oscillator is brought close to its ground
state (Fig. 1(a,i)). The unitary evolution of the system
under Eq. (1) enacts a qubit-state-dependent displace-
ment of the motional wavepacket [31, 32], given by

D̂ (α̂(t)) = exp
{
σ̂x
(
α(t)â† − α(t)∗â

)}
, (2)

where the displacement α(t) at time τ is given by
α(τ) = −iη/2

∫ τ
0

Ω(t)e−i[δt+φ(t)]dt. As the initial state
|0〉 is a superposition in the displacement operator’s
x-eigenbasis, the application of Eq. (2) splits the ion
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FIG. 1. (a) Schematic illustration of the noise sensing sequences in oscillator phase space. (i) A qubit is prepared in |0〉
and the oscillator in its ground state (wavepacket centered at the origin). (ii) An initial displacement D̂(α(t)) of duration
τseg/2 splits the wavepacket into two components associated with the |+〉x (blue) and |−〉x (red) internal qubit states, with the
wavepackets following trajectories indicated by the black lines. (iii) The wavepackets are repeatedly displaced under π-phase
inversion (S − 1) times for a duration of τseg. The nominally straight trajectory in each segment curves under detuning noise
and the wavepackets deviate from the nominal displacement at the conclusion of each segment (dashed circles). (iv) A final
displacement of duration τseg/2 recombines the wavepackets up to an accumulated differential displacement 2|α(τ)|. (b,c)
Schematic illustration of the fixed amplitude (square) and amplitude-modulated (Slepian) pulse profiles. The total sequence
time τ and the number of phase shifts S determine the segment duration τseg = τ/S. The coupling phase in each segment
alternates between 0 and π, indicated by light and dark shading, respectively. For the amplitude-modulated sequences, a
Slepian envelope (dashed line) with an underlying cosinusoidal modulation is applied to the laser amplitude of maximum Rabi
frequency Ωmax. (d) Example filter functions F (ω) for the first three odd-S square sequences (top), with arrows indicating
harmonics, and for the equivalent Slepian-modulated sequences (bottom), where the harmonics have been suppressed. The
filter functions are plotted against the dimensionless quantity ωτ/2π, which is the noise frequency ω normalized to the sequence
duration τ . Insets show the corresponding Rabi frequency Ω(t) and phase profiles.

wavepacket apart and creates an entangled state between
the internal and oscillator degrees of freedom - a motional
cat state, shown in Fig. 1(a,ii).

The sensing protocol is composed of an on-resonance
(δ = 0), continuously-driven state-dependent displace-
ment with periodic discrete π phase shifts, inverting
the direction in phase space. This structure repeat-
edly displaces the split wavepackets through the origin
(Fig. 1(a,iii)). Finally, the wavepackets are brought back
to the origin and, in the absence of noise, coherently re-
interfere to restore the qubit state to |0〉. The presence
of motional mode frequency fluctuations, however, will
result in curved displacements, gradually decreasing the
overlap resulting in a separation of 2|α(τ)| at sequence
end (Fig. 1(a,iv)). This corresponds to residual qubit-
oscillator entanglement and manifests as purity loss in
projective measurements of the qubit. In the maximally
mixed case of zero overlap between the wavepacket com-

ponents, the probability P1 of finding the |1〉 state reaches
0.5.

Each sequence in Fig. 1(b,c) is defined by the total
duration τ and the number of phase shifts S. The total
sensing pulse of length τ consists of S + 1 segments in-
dexed by s ∈ {0, S}, each with duration τs and coupling
phase φs according to,

τs =

{
τseg/2, if s = 0, S

τseg, otherwise
and φs =

{
0, if s = even

π, if s = odd

where τseg = τ/S, similar to a Carr-Purcell-Meiboom-
Gill (CPMG) dynamical decoupling sequence [33]. The
amplitude of the driving field may take the form of a
flat-top “square” shape with a constant Rabi frequency
Ω(t) = Ωmax (Fig. 1(b)). Alternatively, we may employ
a smooth envelope determined by a modulated ‘Slepian’
function (Fig. 1(c)), known to serve as a provably-
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optimal band-limited window in frequency space sup-
pressing spectral leakage [25–27]. Here, the modulated

Rabi frequency, Ω(t) = Ωmax

∣∣∣v(0)m (N,W ) cos {ωSt}
∣∣∣, con-

sists of two components; the first is cosinusoidal with
frequency ωS = 2π(S/2τ), matching the frequency of the
alternating coupling phase. The second is an overall en-

velope defined by a zeroth-order Slepian v
(0)
m (N,W ), with

sample number N and bandwidth W [30].
In a measurement after sequence application, the

expected value of P1 (the sensor signal) may be ex-
pressed [34] as the overlap integral of the noise power
spectral density S(ω) and the sensing sequence’s filter
function F (ω) as

E[P1] =
1

2π

∫ ∞
−∞

dωS(ω)F (ω) with

F (ω) =
∑
k

Tk

∣∣∣∣2πηk2

∫ τ

0

dtΩ(t)e−i[(δk−ω)t+φ(t)]t

∣∣∣∣2 . (3)

The filter function, Eq. (3), describes the susceptibil-
ity of an operation to oscillator frequency noise at fre-
quency ω summed over all oscillator modes k. Here,
Tk = 2(n̄k + 1/2) incorporates the average initial phonon
occupancy n̄k for each mode (typically n̄k ∼ 0.2 in our
experiments). The first-order filter function is valid un-
der the assumption that the residual oscillator displace-
ment is small and that the noise is ‘weak’ (see [30]). In
this work, we simplify the discussion by considering only
a single mode, achieved by ensuring the oscillator mode
frequencies are separated sufficiently such that driving
a particular mode does not excite other modes. We fo-
cus exclusively on noise arising from fluctuations in the
mode frequencies; it is assumed that amplitude noise on
the drive field, to which the sequences are also suscep-
tible, does not contain spectral components in the noise
frequency domain of interest (see [30] for further discus-
sion).

For a fixed sequence duration τ , increasing the
number of phase shifts S in either sequence type
shifts the sensitivity of the filter function to higher
frequencies (Fig. 1(d)). Peak sensitivity occurs
near ωpeak ≈ 2π × S/2τ , which applies to all Slepian-
modulated cases with S ≥ 2 and becomes increasingly ac-
curate in the limit of large S for the square sequences. In-
creasing the sequence duration τ narrows the filter band-
width ∆ω (defined as the full width at half maximum),
with ∆ω ∼ 1/τ . Due to the abrupt inversion of the drive
direction at each phase-shift, the frequency-space repre-
sentation of square pulses exhibits higher order harmon-
ics, which are suppressed under Slepian modulation.

We implement both approaches using a single 171Yb+

ion confined in a linear Paul trap (similar to [35]),
with motional frequencies ωx,y,z ≈ {1.6, 1.5, 0.5} MHz.
A qubit is encoded on the |F = 0,mF = 0〉 ≡ |0〉 and
|F = 1,mF = 0〉 ≡ |1〉 hyperfine ground state levels, split

(a)

(b)
Square

FIG. 2. System-identification experiments. (a) Response to
engineered single-tone noise with a depth of βmod = 40 Hz for
square sequences with τ = 1.5 ms and S = 2, 22, 42 and 62.
As illustrated in the inset, for each sequence the noise fre-
quency ωmod is scanned about the filter function peak. For
the S = 2 data, this frequency range includes the first har-
monic of F (ω) (small bump in inset), for the other sequences
this harmonic is not sampled. Experimental measurements
of E[P1] (markers) for each sequence are overlaid with fil-
ter function predictions (solid lines), including an additional
frequency-independent offset (dashed horizontal lines). The
additional offset for S = 2 is likely due to the dominant in-
trinsic noise contributions in the low frequency regime (cf.
Fig. 3), with the two spurious points potentially due to a
transient increase in intrinsic noise. (b) Comparison of the re-
sponse to single-tone noise for a square (black, diamonds) and
Slepian-modulated (red, circles) sequence with βmod = 65 Hz,
τ = 2 ms and S = 7. The Rabi frequency for the Slepian se-
quence (Ωmax = 2π × 6.2 kHz) is scaled relative to the square
sequence (Ωmax = 2π × 2.6 kHz) in order to match peak sen-
sitivity between the protocols. In both panels, error bars are
the standard error of the mean (SEM) of the phase-samples
averaged to give E[P1] and shaded regions show uncertainty in
the filter function prediction for a variation of n̄±0.1. The in-
set compares the Rabi frequency profile of the two sequences,
with light and dark shading illustrating the alternating cou-
pling phase.

by ∼ 12.6 GHz. Doppler cooling, state preparation
and measurement are performed using a laser near
369.5 nm. Qubit and motional states are manipulated
through stimulated Raman transitions [36] using two
beams from a pulsed laser near 355 nm. We implement
the state-dependent displacement by driving an acousto-
optic modulator (AOM) in one of the beams with a
two-tone radio-frequency signal, producing a bichromatic
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light-field that simultaneously drives the red and blue
sideband transitions on resonance.

We first demonstrate the ability to produce a tune-
able frequency response to motional frequency noise. A
system identification procedure consisting of single-tone
modulation at frequency ωmod with magnitude βmod and
phase φmod shifts the nominally resonant laser-frequency
components symmetrically around the motional sideband
frequencies in the form of βmod sin (ωmodt+ φmod)). In a
given sensing sequence, we average the measured P1 over
different phase values φmod to obtain the expected value
E[P1], which we compare to theoretical predictions. For
square pulses of different S values we see good agreement
between experiment and theory (Fig. 2(a)). In these ex-
periments we are, in principle, able to measure single-
frequency signals above measurement-infidelity limits
corresponding to detunings of ∼ 10 mHz, using sequences
up to a duration of τ = 32 ms and Ωmax/2π = 30 kHz
[30].

Comparing the response of the two kinds of sens-
ing sequences provides direct evidence of harmonic-
suppression in the filter function through Slepian
amplitude-modulated waveforms. The data in Fig. 2(b)
shows that both sequences exhibit similar peak sensitiv-
ity at ωmod/2π ≈ 1.8 kHz, with additional sensitivity due
to spectral leakage at ωmod/2π ≈ 5.2 kHz only present for
the square sequence.

Moving on from these validations, we require a tech-
nique to convert from measurements of E[P1] in the pres-
ence of an unknown noise environment to a quantitative
estimate of the noise power spectrum. For a given set of
filter functions F and a vector of phase-averaged E[P1]
values, denoted as p, the noise power spectrum s may
be inferred via the relation p = F s (Fig. 3(a)). We solve
for s by employing an approach based on convex opti-
mization [17] used for the first time in experiment here.
In this framework the noise spectrum s is estimated by
minimizing the objective function

mins

(
||F s− p||22 + λ‖Ds‖22

)
, s ≥ 0. (4)

The term λ‖Ds‖22 is a regularization term where D is
the first order derivative operator (minimizing ‖Ds‖22 en-
forces smoothness in s) and λ is a hyperparameter tuned
via a standard method to prevent under- or over-fitting
[30]. A strict-positivity requirement prevents overfitting-
induced oscillations [17], and enables the use of arbitrary
sets of measurements with no requirements on the under-
lying measurement probe structures unlike in dynamical
decoupling based spectroscopy [37, 38].

We use these techniques to detect and spectrally recon-
struct intrinsic frequency noise on the ions radial motion.
In Fig. 3(b,c), we sample noise in the band from zero to
50 kHz, comparing the reconstructions returned using
both square and Slepian-modulated sequences. We see a
strong low-frequency signal that dominates the measured
system performance, as well as a number of well defined

Convex optimization

Square

Slepian

550 Hz

690 Hz

70 Hz 

40 Hz 

(d)

(e)(c)

(b)

(a)

(H
z2 /H
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(H

z2 /H
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FIG. 3. (a) Schematic of the noise reconstruction algorithm.
A set of sequences described by filter functions F produces a
set of measurements p. The noise spectrum s and associated
uncertainty (shading) is determined by minimizing objective
function Eq.(4). (b,c) Reconstructed intrinsic noise power
spectral density S(ω), comparing square (b) and Slepian (c)
sequences with 1 ≤ S ≤ 193 and τ = 2 ms with spec-
tral resolution ∆ω/2π. The maximum Rabi frequencies used
were Ωmax = 2π × 9 kHz for (b) and Ωmax = 2π × 20 kHz
for (c). Features present only in the square reconstruction
are indicated by black arrows. The insets (d,e) show re-
constructions performed using higher spectral resolution se-
quences. The feature at ∼ 31.4 kHz is probed with τ = 16 ms,
986 ≤ S ≤ 1018 and Ωmax = 2π × 0.9 kHz (d). The low
frequency regime (e) is probed using Slepian sequences with
τ = 32 ms, 1 ≤ S ≤ 37 and a reduced Ωmax = 2π × 0.3 kHz.
Reducing Ωmax ensures that the sensor response remains in
the small-signal regime, prior to the onset of distortion due
to higher-order filter terms, given by E[P1] . 0.1 [39, 40].

noise features common to both data sets. The insets
(Fig. 3(d,e)) show higher-spectral-resolution reconstruc-
tions of specific noise features, achieved by a combination
of frequency shifting and increasing the pulse duration
to narrow the filter bandwidth. The ability to arbitrarily
shift the filter band and resolution - subject to hardware
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constraints - enables the noise spectrum to be probed in
an iterative manner after identification of coarse spectral
features [26, 27].

The peak height S(ωpeak) of the discrete features
present in the reconstructed spectra may be related to
a motional frequency deviation ±βdev Hz by taking into
account the effect of the filter bandwidth ∆ω using
βdev ≈

√
2S(ωpeak)(∆ω/2π), giving βdev ∼ 10−20 Hz for

the observed features in Fig. 3(b,c). The sensitivity of the
sequences employed in Fig. 3(b,c) is such that, in prin-
ciple, the smallest detectable motional frequency devia-
tions correspond to ∼ 7 Hz for discrete and ∼ 0.3 Hz for
spectrally broad features. We have narrowed the sources
of the peaks near 5 kHz and 31 kHz to likely arise from
electromagnetic pickup in either the resonator stabiliza-
tion circuit or the trap itself, having independently ob-
served transient electromagnetic signals in the laboratory
close to these frequencies. Further, frequency-resolved
analysis of laser light shows no amplitude fluctuations
commensurate with these features. We associate the ad-
ditional spectral peaks present only in Fig. 3(c) with the
sampling of out-of-band noise by the higher harmonics in
the square-sequences’ filter functions, or amplitude noise
caused by rapid phase-transients in acousto-optic modu-
lators which are suppressed by Slepian pulse modulation.
See [30] for further discussion on laser-amplitude noise,
measurement sensitivity, and effects of sensor bandwidth.

In this work we have demonstrated that sequences
of periodically inverted qubit-state-dependent oscilla-
tor wavepacket displacements provide a flexible means
for performing noise spectroscopy on quantum oscilla-
tor modes via the creation of tuneable, band-limited fil-
ters for mode-frequency noise. The technique is readily-
implementable in trapped-ion systems as it leverages the
same interaction used to perform the ubiquitous Mølmer-
Sørensen (MS) gate, enabling ‘in-situ’ noise characteriza-
tion with no additional hardware resources. We have em-
ployed this technique to sense noise on the radial motion
of a single trapped ion in a spectral range from quasi-
DC to 50 kHz, combining two distinct sensing waveforms
with a convex optimization approach to spectrum esti-
mation. In conjunction with previously reported modu-
lation and robustness protocols [34, 41–54], our sensing
technique provides a tool for designing gate operations in
trapped-ion systems with robustness tailored to a specific
noise environment.
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