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Ultracold hybrid ion-atom gases represent an exciting frontier for quantum simulation offering a
new set of functionalities and control. Here, we study a mobile ion immersed in a Bose-Einstein
condensate and show that the long-range nature of the ion-atom interaction gives rise to an intricate
interplay between few- and many-body physics. This leads to the existence of several polaronic and
molecular states due to the binding of an increasing number of bosons to the ion, which is well
beyond what can be described by a short range pseudo-potential. We use a complementary set of
techniques including a variational ansatz and field theory to describe this rich physics and calculate
the full spectral response of the ion. It follows from thermodynamic arguments that the ion-atom
interaction leads to a mesoscopic dressing cloud of the polarons, and a simplified model demonstrates
that the spectral weight of the molecules scale with increasing powers of the density. We finally
calculate the quantum dynamics of the ion after a quench experiment.

The versatility and control of atomic gases make them
powerful platforms for quantum simulation of many-body
systems [1, 2]. Ions immersed in atomic gases represent
an exciting new research direction due to their hybrid na-
ture, which enables new functionalities and broader sim-
ulation capabilities. In particular, the excellent control
of the motional and internal degrees of individual ions
opens up new opportunities to explore the interaction
between a small quantum system and its environment,
and to address fundamental questions regarding cooling,
decoherence, and entanglement. The ion can also act as
a local probe, which has indeed already been exploited
in classic experiments investigating vortices [3] and the
properties of superfluid liquid 4He [4–6] and 3He [7–11].
Experiments on ions in atomic gases have explored

atom-ion collisions, sympathetic cooling, controlled
chemistry [12–19], transport [20], and molecular for-
mation [21]. Theoretically, the Fröhlich model, valid
for weak ion-atom interaction, was used to explore an
ion in an atomic Bose-Einstein condensate (BEC) [22]
and three-body recombination dynamics was studied in
Refs. [23, 24]. Several papers have predicted the forma-
tion of molecular ions based on kinetic and mean-field ap-
proaches [25, 26], quantum defect theory [23], and time-
dependent Hartree and Monte-Carlo calculations [27, 28].
Inspired by this exciting development, we investigate

the spectral and dynamical properties of a mobile ion im-
mersed in a BEC. We demonstrate that when the range
of the ion-atom interaction is comparable to the interpar-
ticle distance, a rich interplay between few- and many-
body physics arises with several polaronic and molecular
states, which cannot be captured with a pseudo-potential
approach. Using a variational wave function that allows
for the dressing of the ion by an infinite number of Bo-
goliubov modes, we calculate the full spectral response of

the ion and a comparison with a field theory calculation
based on the Bethe-Salpeter equation demonstrates that
the molecules are formed by binding an increasing num-
ber of bosons to the ion. We show using a heuristic model
that the spectral weight of these molecules scale with
increasing powers of the BEC density, and from ther-
modynamic arguments we conclude that the long-range
ion-atom interaction gives rise to a mesoscopic dressing
cloud of the polarons. The quantum dynamics of the ion
ensuing a quench experiment unveils the molecular states
as quantum beats in the dynamical overlap function.
Model.- Consider an ion of mass m immersed in a

BEC of atoms of mass mB. The Hamiltonian is

Ĥ =∑
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where â
†
k
and b̂

†
k
creates an ion and a boson respectively

with momentum k. We describe the BEC of density
n0 using Bogoliubov theory giving the dispersion Ek =√
ǫ2
k
+ 2n0gBǫk with ǫk = k2/2mB and gB = 4πaB/mB

with aB the atom-atom scattering length. The atom-ion
interaction is V (k), and we use units where the system
volume and h̵ are unity.
In real space, the atom-ion interaction has the long-

range asymptotic form V (r) ∼ −α/r4, where α is pro-
portional to the polarisability of the atoms [29]. A
characteristic length scale of the interaction is there-
fore rion = √2mrα with m−1r = m−1 + m−1B , and using
the polarisability of atoms like 87Rb and 23Na this gives
rion ∼ O(102)nm [26]. This is of the same order as the
average interparticle distance for a typical BEC with den-
sity n0 ∼ 1014cm−3, and it is therefore crucial to include



2

the asymptotic form of V (r) in our analysis. To do this,
we use the effective interaction [30]

V (r) = − α

(r2 + b2)2
r2 − c2
r2 + c2 , (2)

where the parameter c establishes a repulsive barrier such
that the potential is repulsive (attractive) for c < r (c >
r), while b is related to the depth of the potential. We
have V (0) = α/b4, which is large compared to any other
relevant energy in order to mimic the strong repulsion
when the electron clouds of the atom and the ion overlap.
In the inset of Fig. 1, we plot V (r) in units of Eion =
1/2mrr

2
ion for two different values of b. For concreteness,

here and in the rest of the Letter we consider a 87Rb+ ion
in a 87Rb BEC, which can be created by photo-ionization.
In this case, c = 0.0023rion in Eq. (2), m =mB.
Ion-atom scattering.- In Fig. 1, the atom-ion scatter-

ing length a, obtained by solving the zero energy s-wave
Schrödinger equation with the potential V (r), is plotted
as a function of b. It exhibits several divergencies, which
correspond to the emergence of two-body bound states.
The first bound state appears for b/rion ≃ 0.58, and more
bound states appear as the atom-ion potential becomes
deeper with decreasing b.

FIG. 1. The atom-ion s-wave scattering length a as a function
of b. The inset shows the atom-ion potential for b/rion = 0.3
and 0.35.

A key point is that when the range of the interaction
rion is of the order of or larger than the interparticle

distance, i.e. rion ≳ n
−1/3
0 , we cannot employ the usual

short range pseudo-potential, which has been successfully
used to describe neutral atomic gases. Instead, we need
to retain the full interaction Eq. (2) in our analysis of
this strongly interacting many-body system.

Polarons.- We start by analysing arguably the most
interesting case, i.e. the high density regime. To account
for the strength and range of the ion-atom interaction,
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FIG. 2. The zero momentum ion spectral function A(ω) as
function of the potential parameter b and the corresponding
scattering length a for n0r

3

ion = 1(top) and n0r
3

ion = 0.01 (mid-
dle). The black line is the mean-field energy, the red line is
the ladder approximation for the attractive polaron present
for b/rion ≳ 0.5, the red dashed line the repulsive polaron
present for b/rion ≲ 0.34, and the white lines are the molec-
ular states obtained from the Bethe-Salpeter equation. The
stars ⋆ signify the breakdown of the Bogoliubov approxima-
tion. (bottom) The number of atoms in the dressing cloud
with the same color coding as the top panel, except the white
molecular lines, which are represented as green lines. In the
top panel, we take the logarithm to the spectral function,
which visualy makes the width appear larger. The middle
panel is in linear scale.

which may lead to correlations involving many bosons
around the ion, we use a coherent state variational ansatz

∣Ψ(t)⟩ = e−iφ(t)e∑k
[γk(t)β̂

†

k
−γ∗

k
(t)β̂k]∣Ψ(0)⟩, (3)

that allows the ion to be dressed by an infinite amount
of Bogoliubov modes. Here, β̂

†

k
= ukb̂

†

k
+ vkb̂−k cre-

ates a Bogoliubov mode with momentum k and energy
Ek, here φ(t) and γk(t) are the variational parame-

ters [31]. The initial state ∣Ψ(0)⟩ = â
†

k=0
∣BEC⟩ cor-
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responds to the injection of a zero momentum ion in
the BEC. We determine the dynamical overlap S(t) =⟨Ψ(0)∣Ψ(t)⟩ = e−iφ(t)e−

1

2
∑k
∣γk∣

2

. The impurity spectral
function can then be obtained by a Fourier transform
A(ω) = Re ∫ ∞0 S(t)eiωtdt/π [31, 32].
In Fig. 2(top), we plot the spectral function for the

density n0r
3
ion = 1 and zero temperature as a function of

b and the corresponding scattering length a. For large
b meaning weak coupling 1/kna ≪ −1 with k3n/6π2 = n0,
there is a well-defined quasiparticle with mean-field en-
ergy E = 2πan0/mr. Its energy decreases with decreasing
b (increasing 1/kna) corresponding to an increasing depth
of the potential, and the mean-field expression eventu-
ally breaks down. This quasiparticle is the attractive
Bose polaron for the ion in direct analogy with what is
observed for neutral impurities [33–36]. Since we have
added a small imaginary part to the frequency for nu-
merical reasons, its quasiparticle peak becomes indistin-
guishable from the many-body continuum starting at en-
ergies just above [37]. The attractive polaron remains
a stable ground state with decreasing b but with a very
small residue.
To further analyse the nature of the polaron, we use

a thermodynamic argument to calculate the number of
atoms ∆N in the dressing cloud around the ion as [26, 38]

∆N = −(∂µI

∂n0

)( ∂n0

∂µB

)
nI=0

= −( ∂µI

∂µB

)
nI=0

, (4)

where µI is the energy change when the ion is added
to the BEC, µB = gBn0 is the chemical potential of the
atoms, and nI is the ion density, which is zero for a sin-
gle ion. For a given many-body state with energy Ej
obtained from Eq. (3), we set µI = Ej in Eq. (4) and
calculate ∆N by numerical differentiation.
In Fig. 2(bottom), we see that number of bosons in the

dressing cloud around the ion in the polaronic state is
quite large reflecting the strength and range of the atom-
ion interaction. In the weak coupling limit b/rion ≫ 1, we
recover the mean-field result ∆N = −a/aB [26].
Figure 2(top) furthermore shows that a number of new

states emerge in the regime b/rion < 0.58 where the inter-
action supports a two-body bound state. We have a > 0
for 0.58 > b/rion > 0.35 and a ≤ 0 for 0.35 ≥ b/rion > 0.26
where another bound state emerges, see Fig. 1. Con-
sider first the branch with the highest energy emerging
for b/rion ≃ 0.34⇒ 1/kna ≃ −1.45, shown by a red dashed
line. Its energy εP is larger than zero for b/rion ≳ 0.32,
and in addition the number of particles ∆N in its dress-
ing cloud is negative as shown in the bottom panel. From
this we conclude that it is a repulsive polaron. Its energy
becomes negative for b/rion ≲ 0.32 where ∆N > 0 showing
that it smoothly evolves into an attractive polaron with
increasing depth of the ion-atom interaction potential.
This is qualitatively different from the case of a neutral
impurity with a short range interaction, where there is
no attractive polaron when there is a bound state.

Molecular ions.- We now turn our attention to the
low energy states emerging together with the repulsive
polaron at b/rion ≲ 0.34 in Fig. 2(top) and seen more
clearly in the inset. They are molecular ions arising from
the binding of 1,2, . . . bosons to the ion. To demonstrate
this, we use the Bethe-Salpeter equation, which pro-
vides a general framework for analyzing bound states in a
many-body environment. Consider the scattering matrix
between an ion with momentum/energy k1 = (k1, iω1)
and an atom with momentum/energy k2 = (k2, iω2). In
the ladder approximation, it obeys the Bethe-Salpeter
equation [31]

Γ(k1,k2,q; iω1 + iω2) = V (q) −∑
q′
V (q′)G11(k2 − q′)

×G(k1 + q′)Γ(k1 + q′,k2 − q′,q − q′; iω1 + iω2), (5)

where q is the momentum transfer, G(k) = 1/(iω −
k2/2m) is the ion Green’s function, and G11(k) =
u2
k/(iω − Ek) − v2k/(iω + Ek) is the normal (as opposed

to anomalous) BEC Green’s function for the atoms. The
sum∑q′ ≡ T ∑iω ∫ d

3q/(2π)3 is both over momenta q and
Matsubara frequencies iω, and we analytically continue
iω → ω+ i0+ as usual. Due to the long range of the atom-
ion potential, it is essential to retain its full momentum
dependence in Eq. (5), in contrast to the usual case of a
short-range interaction between neutral atoms.
The ion self-energy Σ(k, ω) = n0Γ(k,0,0;ω) describes

the scattering of a single atom out of the BEC, and
the quasiparticle energy is obtained by solving εP,k =
k2/2m +Σ(k, εP,k). The resulting ladder approximation
has successfully been applied to explain experimental re-
sults for neutral impurities in a BEC forming Bose po-
larons [33–36, 39]. In the present case it yields the red
line in Fig. 2(top), which agrees very well with the vari-
ational result for the attractive polaron stable, whereas
it fails to capture the lower lying states.
This can however be addressed by noting that a pole

of the zero momentum scattering matrix gives the en-
ergy of a bound state. Thus, replacing in Eq. (5) the
bare ion Green’s function with the polaron Green’s func-
tion Gj(k) = 1/(iω−εP −k2/2m) will give the energy of a
dimer consisting of an atom bound to the polaron. This
yields the top white dashed line in Fig. 2(top). The ex-
cellent agreement with the variational ansatz shows that
this state indeed arises from the binding of an atom to the
polaron. We perform this procedure recursively by cal-
culating the scattering matrix between this new molec-
ular state and an atom, which then yields the second
white line below the attractive polaron in Fig. 2 and so
on. Note that we have used unit residues of all propaga-
tors in Eq. (5), which physically corresponds to assum-
ing that the molecules interact with the ion in the same
way as bare atoms. This is obviously an approximation,
but since the energies obtained from this procedure agree
very well with those from the variational ansatz, we con-
clude that these branches indeed involve the binding of
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one, two, . . . atoms to the ion. In the following, we re-
fer for brevity to these states as molecular ions although
they do have a non-zero quasiparticle residue as is evident
from Fig. 2. We note that dimer states consisting of one
atom bound to the ion have recently been observed [21],
and our prediction of molecular states involving more
atoms is consistent with earlier results based on different
methods [25–28].
Note that these molecules are stable only for b sig-

nificantly smaller than b/rion = 0.58 where the two-body
atom-ion state emerges. Hence, many-body effects desta-
bilize the binding of atoms to the ion as compared to the
vacuum case. The molecules are stable for a > 0 and
a < 0 as opposed to the case of a short-range interac-
tion, where similar states are predicted to exist only for
a < 0 [40], again showing the qualitative differences be-
tween a charged and a neutral impurity.
The binding of additional atoms to the ion will even-

tually be halted by the repulsion between them giving
a positive energy ∼ aB∆N2. While this effect is not in-
cluded in our theory, we can estimate when it becomes
important by calculating the gas factor of the dressing
cloud

√
ncla

3
B. Here, ncl =∆N/r̄3 is the average density

of atoms in the dressing cloud with r̄ = [∫ d3rr2 ∣φ(r)∣2]1/2
the spatial size of the molecule with wave function φ(r).
As explicitly shown in the Supp. Mat. [31], the size of
the molecular states is ∼ rion and decreases as they be-
comes increasingly bound. This is around three orders of
magnitude larger than the ground state size of Rb+2 [41],
consistent with their binding energy being much smaller.
The ⋆’s in Fig. 2 indicate when the gas factor of a given
molecular state becomes larger than 0.1. A reliable de-
scription of the region below the stars requires one to go
beyond Bogoliubov theory.
The basic physics of the binding of bosons to the ion

can be captured using the Hamiltonian

Ĥs =
∞∑
l=0

{[εP + εB(l − 1)]ĉ†l ĉl + g√n0ĉ
†
l+1ĉl + h.c.} . (6)

Here, ĉl creates a state with l bosons bound the polaron,
εB < 0 is the energy released by the binding of a boson,
and g

√
n0 is the matrix element for this process. Note

that this is proportional to
√
n0 since the boson is taken

from the BEC with density n0. This also means that
we can suppress the momentum since this is zero for all
states. The model is easily solved giving a continued
fraction form of the zero momentum ion Green’s function

G(ω)−1 = ω − εP − g2n0

ω − εB − g2n0

ω − 2εB − g2n0

ω − 3εB − . . .

. (7)

For g2n0/ε2B ≪ 1, the highest energy pole is ≃ εP corre-
sponding to the repulsive polaron and there is an infinite

ladder of poles with energies ≃ εP − lεB corresponding
to states with l = 1,2, . . . bosons bound to the ion. The
residue of these states is (g2n0/ε2B)l ∝ nl

0 reflecting that
they involve l bosons taken from the BEC. This scal-
ing explains the decreasing spectral weight of the deeper
molecular lines seen Fig. 2(top).

It also means that the relative spectral weight of the
different lines depends on the BEC density. This is il-
lustrated in Fig. 2(middle), which shows the ion spectral
function for n0r

3
ion = 0.01. We see that only two states

with significant spectral weight emerge for b/rion < 0.58
when the atom-ion potential supports a bound state: The
new polaron and the highest molecular state with one bo-
son bound to the ion. Since the ground state remains the
attractive polaron, this is consistent with the finding that
for a static ion in the dilute limit, there are 2νs + 1 so-
lutions to the Gross-Pitaevskii equation where νs is the
number of two-body bound states of the atom-ion inter-
action potential [26, 42]. The small spectral weight of the
bound states involving more than one boson also means
that they are quite sensitive to additional damping.
Dynamics.- We finally investigate the quantum dy-

namics after a zero momentum ion is injected in the BEC.
The overlap S(t) = ⟨Ψ(0)∣Ψ(t)⟩ is plotted in Fig. 3. For
b/rion = 2, we have ∣S(t)∣ → Z for t → ∞ where Z is the
quasiparticle residue of the attractive polaron [40, 43–45].
For b/rion = 0.5 on the other hand, S(t) decreases mono-
tonically to zero since the quasiparticle has a vanishingly
small residue, see Fig. 2(top). In the right panel of Fig. 3,
we plot S(t) when the molecular states are present. For
b/rion = 0.3 (orange), S(t) oscillates with an almost con-
stant amplitude after an initial decay. These oscillations
arise from a coherent population of the molecular states
and the polaron, see Fig. 2(top). For b/rion = 0.25 (blue)
on the other hand, the polaron is strongly damped giving
rise to decoherence and S(t) therefore decays monotoni-
cally to zero, see Fig. 2(top).

Figure 3 shows that the many-body time scale is
τion ≈ 1/Eion. For b/rion = 0.25 and rion = 100nm it is of
the order of τion ≈ 13.55µs. This should be compared to
the three-body recombination time τ3B = 1/K3n

2
0. Tak-

ing K3 ≈ 3.3 − 6 × 1025cm6/s [20, 46] and n0 = 1014cm−3
for a typical BEC yields τ3B ≈ 160 − 300µs. Also, the
time-resolution for state-of-the-art hybrid ion-atom ex-
periments is ≈ 10 ns. We conclude that the many-body
phenomena described here should be observable before
three-body decay sets in.

Conclusions and outlook.- We studied the static and
dynamical properties of a mobile ion in a BEC. The long-
range nature of the atom-ion interaction was shown to
result in a rich spectrum with several quasiparticle and
molecular ions. We demonstrated that the quantum dy-
namics after a quench where the ion is injected into the
BEC is characterised by coherent oscillations between the
different states as well as decay. Our work demonstrates
the diverse and exciting physics that can be realised in
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FIG. 3. In the left panel ∣S(t)∣ is shown for b/rion = 2 (or-
ange) and b/rion = 0.5 (blue). The right panel shows ∣S(t)∣
for b/rion = 0.3 (orange) and b/rion = 0.25 (blue). We take
n0r

3

ion = 1.

ion-atom systems and may serve as a guide as well as
motivate future investigations into these hybrid systems.
In particular, dimer states consisting of one atom bound
to the ion have recently been observed, and it would be
very interesting to extend this experimental search to the
predicted deeper lying larger molecular ions preferably
using a high density BEC [21]. The long-range nature
of the interaction furthermore makes ion-atom systems
well suited for exploring angular momentum exchange
of the molecules with the surroundings [47–50]. Radio-
frequency and Ramsey spectroscopy have been used to
measure the spectral function and the dynamics for neu-
tral impurities [33–36, 44, 51, 52], and analogous probes
for charged impurities would be highly useful.
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