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The metric of a spacetime can be greatly simplified if the spacetime is circular. We prove that in
generic effective theories of gravity, the spacetime of a stationary, axisymmetric and asymptotically
flat solution must be circular if the solution can be obtained perturbatively from a solution in the
General Relativity limit. This result applies to a broad class of gravitational theories, that include
arbitrary scalars and vectors in their light sector, so long as their non-standard kinetic terms and
non-mininal couplings to gravity are treated perturbatively.

Introduction.—Despite the complexity and nonlinear-
ity of the Einstein equations, rotating black holes in Gen-
eral Relativity (GR) are described by a remarkably sim-
ple analytical solution obtained by Kerr [1, 2]. A crucial
step in finding the Kerr solution is that the ten unknown
functions of four coordinate variables in the metric can be
reduced to four unknown functions of only two variables.
This simplification is only possible because stationary
and axisymmetric vacuum solutions in GR belong to a
specific class called circular spacetimes [3]. However, this
is not necessarily the case in generic gravitational theo-
ries [4] and one should not expect a priori that black
hole solutions in such theories will be circular. In par-
ticular, one should expect the validity of the circularity
assumption to play a role as important as it did in GR to
obtain rotating black hole solutions (either numerically
or analytically) in such theories. In turn, knowledge of
these solutions constitutes the stepping stone upon which
many tests of strong-field gravity rely [5]. The use of an
over-simplified ansatz based on the circularity condition
can lead to spacetimes that are inconsistent with a given
theory’s field equations. This was recently observed, for
instance, in the case of rotating black hole solutions with
linearly time-dependent hair in cubic Galileon theories in
which the circularity condition is not satisfied [6].

In this Letter, we investigate the circularity of station-
ary and axisymmetric solutions in generic gravitational
theories, paving the way for finding rotating black hole
solutions in GR and beyond. In order to remain generic
on the gravitational theory, we work within the effective
field theory (EFT) framework, in which UV modifica-
tions of GR manifest as higher dimensional operators in
the low-energy EFT and can be treated perturbatively.
The EFT framework works well for isolated astrophysical
black holes, which have masses in the ∼ 5−1010M� range
thanks to their low energy scale (. 10−11eV), and is
also supported by the agreement of GR predictions with
gravitational wave detections [7] and other electromag-
netic observations [8]. In particular, we focus on gravita-

tional theories whose low-energy EFT represents exten-
sions of GR involving additional (scalar) fields and other
operators. These EFTs include f(R) gravity or more
general scalar-tensor theories [9, 10], and quadratic grav-
ity [11], such as dynamical Chern–Simons gravity [12, 13]
and Einstein–dilaton–Gauss–Bonnet gravity [14, 15], as
well as gravitational EFTs without light scalar fields, like
those studied in [16–18].

As the modifications of GR are small, black hole solu-
tions in the EFTs can be obtained through a perturba-
tive expansion around one (or more) coupling constants
of such theories (see [19–33] for examples). We show
here that the spacetime of stationary, axisymmetric, and
asymptotically flat solutions is circular in these EFTs,
hence also in the corresponding high-energy gravitational
theories. In principle, there could be other branches of
solutions which are not connected perturbatively to their
GR counterparts (see [34, 35] for example), but these
are not the focus of this Letter. We use geometric units
(c = 8πG = 1) and employ mostly plus metric signature.

Circular spacetimes in GR.—Consider a stationary
and axisymmetric spacetime associated with two Killing
vectors ξµ and χµ that correspond to the two isometries
respectively. Fig. 1 gives a schematic illustration of this
geometry. Carter [36] showed that the two Killing vectors
commute, which means one can choose adapted coordi-
nates (t, r, θ, φ) on the spacetime such that ξ = ∂t and
χ = ∂φ. The isometries imply

∂tgµν = 0 = ∂φgµν . (1)

Moreover, there exist privileged 2-dimensional surfaces,
called surfaces of transitivity, to which the Killing vec-
tors are everywhere tangent, except on the rotation axis
where χµ vanishes. In adapted coordinates, the surfaces
of transitivity can be labelled by the values of (r, θ).

A circular spacetime is a subclass of stationary and
axisymmetric spacetimes for which, in addition to (1),
there exists a family of 2-surfaces known as meridional
surfaces, that are everywhere orthogonal to the surfaces
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FIG. 1. Geometry of a stationary and axisymmetric space-
time. The Killing vector ξµ is associated with time transla-
tion and χµ is associated with rotations about the symmetry
axis. Note that ξµ and χµ are not necessarily orthogonal.
The surface of transitivity is generated by ξµ and χµ, and is
degenerate on the rotation axis where χµ vanishes. The inde-
pendent vectors (j)ην (j = 3, 4) are chosen to be orthogonal
to the surface of transitivity. Here we only show one of the
orthogonal vectors.

of transitivity. In this case, one can further choose the
coordinates r and θ such that

gtr = gtθ = gφr = gφθ = 0 . (2)

Without loss of generality, the metric can then take the
following ansatz

gµνdx
µdxν = −N2dt2 +A2

(
dr2 + r2dθ2

)
+B2r2 sin2 θ (dφ− ωdt)2 , (3)

in quasi-isotropic coordinates, where N , A, B, and ω are
functions of r and θ.

Papapetrou [3] (see also [37]) showed that a spacetime
is circular if (i) ξ[µχν∇ρξσ] and ξ[µχν∇ρχσ] each vanish
at least at one point of the spacetime, and (ii)

ξµR [ν
µ ξρχσ] = 0, χµR [ν

µ ξρχσ] = 0 , (4)

everywhere in spacetime, where the square brackets de-
note full antisymmetrization. For asymptotically flat
spacetimes, which we focus on, Carter further showed
that a rotation axis at which χµ = 0 exists [36], thus the
first condition is satisfied.

Condition (4) is trivially satisfied if the Ricci tensor
vanishes, which means that any stationary, axisymmet-
ric and asymptotically flat vacuum solution in GR is cir-
cular, as well as those Ricci-flat solutions in modified
gravity theories (e.g. [24, 38]). Condition (4) can also be
recast as a requirement of the Ricci tensor being invert-
ible [39, 40]. Let ζµ(i) (i = 1, 2) be the two Killing vectors

ξµ and χµ, and η
(j)

ν (j = 3, 4) be two independent vec-
tors everywhere orthogonal to ξµ and χµ. A tensor is
said to be invertible in the isometry group, if the scalars
obtained by contracting any combinations of the tensor’s

indices with any choice of ζµ(i) and η
(j)

ν vanish when-

ever the number of contracted ζµ(i) is odd. In particular,

the Ricci tensor is invertible if

R ν
µ ζµ(i) η(j)

ν = 0 , i = 1, 2 , j = 3, 4 . (5)

Heuristically, condition (5) is equivalent to condi-
tion (4) because the latter is equivalent to requiring
that ζµ(i) R ν

µ be tangent to the surface of transitiv-

ity (i.e., proportional to any linear combination of ζν(i) ),
and thus, that any part tangent to the meridional sur-
face (i.e., proportional to any linear combination of
ην(j) ) vanish. In the following, we shall omit the pre-

sub/superscript of ζµ and ην , and bear in mind that each
of them represents a vector in a two vector set.

Circularity in generic gravitational theories.—Let us
consider a generic gravitational theory, potentially con-
taining fields of arbitrary spin and coupling to gravity
with Lagrangian,

L =
1

2
R+ Lϕ + Lψ + Lint (∇ρ, Rρσαβ , ϕ, ψ) , (6)

where the fields are classified as heavy fields ψ or light
fields ϕ depending on whether their masses are above
or below the curvature scale of the solution that we are
interested in. Here, Lϕ and Lψ are the Lagrangians of
ϕ and ψ, while Lint captures all the interactions between
the fields as well as any non-minimal couplings to gravity.
In particular, we assume that non-standard kinetic terms
of ϕ, if there is any in Lϕ, can be treated perturbatively.
At the energy scale of the solution, we can integrate out
the heavy fields with mass larger than the curvature of
the solution we are interested in,

ei
∫
d4x
√
−gLEFT =

∫
Dψ ei

∫
d4x
√
−gL, (7)

and obtain a low-energy EFT with Lagrangian, (see
Refs. [41–43] for explicit examples),

LEFT =
1

2
R+ L0 (ϕ, gµν) + αLM (∇ρ, Rρσαβ , ϕ) ,(8)

where operators are sorted according to their dimensions.
In particular, L0 are operators constructed by the light
fields ϕ and their covariant derivatives with dimensions
equal to or less than 4, while LM are higher dimension
operators constructed by the Riemann tensor, the light
fields and derivatives of both, and therefore are sup-
pressed by a small parameter α. The heavy fields ψ
in (6) have been integrated out and manifest themselves
solely as higher curvature and derivative corrections in
LM. The curvature scale of isolated astrophysical black
holes is expected to be smaller than 10−11 eV. Hence, in
realistic situations, the heavy fields ψ include all massive
particles of the Standard Model and beyond.

For now, we focus on the case in which the light fields,
if any, are all scalar fields. We emphasize that ϕ denotes



3

all light fields in the EFT, which we shall not distinguish
with additional labels, and thus, inner products require
an internal space metric, which we will also suppress [44].
This EFT reduces identically and smoothly to GR as
α → 0, i.e. in this limit Eq. (8) reduces to the Einstein-
Hilbert action minimally coupled to light scalar fields.

The modified Einstein equations in this theory are

Rµν −
1

2
Rgµν = Tµν + αMµν , (9)

where Tµν ≡ −2δ (
√
−gL0) /δgµν and Mµν ≡

−2δ (
√
−gLM) /δgµν are the energy-momentum tensors

associated with L0 and LM respectively. In particular,
terms in Tµν are either proportional to gµν or propor-
tional to ∂µϕ∂νϕ due to the dimension of the operators
in L0. Given the smallness of α, a solution to Eq. (9)
{gµν , ϕ} can be obtained order-by-order in α. For con-

creteness, we use {g(n)µν , ϕ(n)} to denote the solution to

nth order in α, i.e. gµν = g
(n)
µν +O(αn+1), with O(αn+1)

accounting for all higher-order corrections. We also label

a quantity with subscript or superscript (n), e.g. T
(n)
µν or

gµν(n), if it is calculated up to nth order in α. The full solu-

tion is given by {g(n)µν , ϕ(n)} with n approaching infinity,
for α sufficiently small.

In the following, we prove that the spacetime of a sta-
tionary, axisymmetric and asymptotically flat solution is
necessarily circular, if the solution can be obtained order
by order in α. Here we only consider solutions with sta-
tionary and axisymmetric scalar fields, which is not nec-
essarily the case for the spacetime to be stationary and
axisymmetric as we discuss later. We prove this state-
ment in three steps.

First, we prove that the solution is circular at zeroth

order in α, i.e. g
(0)
µν is circular. At zeroth order, we get

back to GR, and g
(0)
µν is circular if T

(0)
µν is invertible [39]. In

order to show the invertibility, let us consider T ν
µ ζµ ην ,

where ζµ are the two Killing vectors and ην are the two
independent vectors orthogonal to ζµ. Since the scalar
fields are stationary and axisymmetric, the vanishing of
their Lie derivatives along ζµ implies

£ζϕ ≡ ζµ∂µϕ = 0. (10)

Thus, terms in Tµν that are proportional to ∂µϕ∂νϕ van-
ish after contracting with ζµ. The rest of Tµν is propor-
tional to gµν , and do not contribute to T ν

µ ζµ ην given
the orthogonality between ζµ and ην . Therefore,

T ν
µ ζµ ην = 0, (11)

i.e. Tµν is invertible. At zeroth order in α, Eq. (11)

means T
(0)
µν is invertible, and hence g

(0)
µν is circular.

Next, we prove that if g
(0)
µν is circular, then g

(1)
µν is also

circular. This can be proved if the Ricci tensor associated

with g
(1)
µν is invertible, or equivalently [45],

R ν
µ ζµ ην = 0 +O(α2). (12)

Contracting Eq. (9) with ζµ and ην , we find

R ν
µ ζµ ην = αM ν

µ ζµ ην , (13)

where the second term on the left hand side of Eq. (9)
does not contribute due to the orthogonality between ζµ

and ην , and the first term on the right hand side of Eq. (9)
also vanishes because of the invertibility of Tµν .

On the other hand, since g
(0)
µν is circular, the Riemann

tensor associated with g
(0)
µν is invertible (see the Supple-

mental Material [46] for a proof). Moreover, we show
in the Supplemental Material [46] that any tensor con-
structed from stationary, axisymmetric, and invertible
tensors and their covariant derivatives associated with
g
(0)
µν is also itself invertible. Together with the assump-

tion that the scalar fields ϕ are stationary and axisym-
metric, we conclude that Mµν evaluated at zeroth order
in α is invertible, and hence

M ν
µ ζµην = 0 +O(α). (14)

Substituting Eq. (14) into Eq. (13), we find R ν
µ ζµ ην

vanishes to first order in α, and therefore, g
(1)
µν is circular.

Finally, we assume the solution is circular to the nth
order in α, and show that the solution to the (n + 1)-
th order is circular. The proof is similar to that in the
second step. In this case, M ν

µ ζµην can be evaluated to

the n-th order in α with g
(n)
µν and ϕ(n). The circularity

of the n-th order solution implies that

M ν
µ ζµην = 0 +O(αn+1) . (15)

Substituting this into Eq. (13), we find R ν
µ ζµ ην vanishes

to (n + 1)-th order in α, and hence the solution to the
(n + 1)-th order is circular. By induction, we conclude
that the solutions is circular to all orders in α.

Extension to generalized light fields.—Our proof can
be further extended to theories with more general light
fields, as long as the light fields and their leading-order
stress-energy tensor Tµν are invertible.

For light scalar fields, L0 may also include higher
dimension operators that are arbitrary functions of ϕ,
∇µϕ∇µϕ and 2ϕ. In this case, the resulting leading or-
der stress-energy tensor is

Tµν =− ∂L0

∂(∇λϕ∇λϕ)
∇µϕ∇νϕ+∇(µ

(
∂L0

∂(2ϕ)

)
∇ν)ϕ

+
1

2
gµν

[
L0 −∇λ

(
∂L0

∂(2ϕ)
∇λϕ

)]
, (16)

where terms proportional to ∇µϕ∇νϕ or gµν are in-
vertible for the same reasons discussed above. More-
over, ∂L0/∂(2ϕ) inherits the symmetries of ϕ, so its Lie
derivatives along ζµ vanish. Thus, the second term on
the right hand side of (16), and hence the aggregated
Tµν , is invertible, indicating stationary, axisymmetric
and asymptotically flat vacuum solutions in such more
general scalar-tensor theories are also circular.
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In addition to the light scalars as described above, our
proof can also be generalized to gravitational theories
that include light vectors, as long as the non-standard
kinetic terms and non-minimal couplings to gravity may
be treated perturbatively. In particular, our proof can
be extended to include light vectors with the following
restrictions: (i) L0 is totally constructed from the vector
fields Vµ and their exterior derivatives Fµν = 2∇[µVν],
and (ii) the vector fields Vµ, apart from being station-
ary and axisymmetric, are invertible. In this case, since
the exterior derivative does not depend on the metric,
the energy-momentum tensor associated with L0 is com-
pletely constructed from Vµ and Fµν , too. We show in the
Supplemental Material [46] that Fµν inherits the vector
field’s invertibility without assuming circularity. There-
fore Tµν is invertible, and any such vector-tensor theory
admits circular ansatz for stationary and axisymmetric
vacuum solutions. In addition, any Generalized Proca
theory, as introduced in [47–51], would inherit the same
properties so long as the higher-order Lagrangians intro-
duced in these theories are treated perturbatively.

Discussions.—Our main result is a proof that the
spacetime of stationary, axisymmetric, and asymptoti-
cally flat rotating black holes in a broad class of gravita-
tional EFTs is circular. We emphasize that in addition to
the light fields we have considered, the theory may also
include any heavy field of arbitrary spin and coupling
to gravity, as long as the mass of these fields is larger
than the curvature scale of the black holes. Our result is
of immediate importance to the ongoing effort of testing
the strong-field regime of gravity through gravitational
wave [52–56] and electromagnetic observations [57, 58]
both in which black holes play a central role [5]. These
tests generically require knowledge of a rotating black
hole solution (within a certain EFT) from which observ-
able consequences are then deduced and then ultimately
confronted against observations. Here we proved that
circularity is shared among a broad class of solutions,
justifying the use of this ansatz when searching for ana-
lytical and numerical solutions.

What are the implications of our result to some spe-
cific theories? Consider, for instance, dynamical Chern-
Simons gravity, in which a scalar field couples to the Pon-
tryagin density [12, 13]. This theory must be treated
as an EFT to admit an well-posed initial value prob-
lem [59] and, in fact, this theory is captured within the
assumption of our proof. Rotating black hole solutions
in this theory are known both numerically [60, 61] and
analytically [20, 27, 62–64], in a perturbative expansion
in the coupling strength α and black hole spin a � 1
to O(α2a5) [26, 30, 62] and in the extremal limit [65].
Our results indicate that the spacetime of rotating black
holes in this theory is circular, justifying the use of the
ansatz (3) in numerical calculations. The same applies
to scalar Gauss–Bonnet gravity with shift-symmetric and
dilatonic couplings where rotating black hole spacetimes

are known both analytically [24, 25, 27–29] and numeri-
cally [66–69], including the final state of black holes that
results at late times after highly dynamical black hole
formation [70–72]. In fact, it applies to any EFT exten-
sion of GR, including any low-energy EFT of gravity that
include massive fields of arbitrary spins.

Our results agree with those of [73], which suggested
the non-existence of rotating non-circular black holes
in dynamical Chern-Simons gravity and shift-symmetric
scalar-Gauss-Bonnet gravity, by working perturbatively
to O(α2a2). Our conclusions extend to all orders in these
two parameters. Moreover, our results also apply to non-
vacuum solutions in generic gravitational theories of the
type discussed in this Letter, as long as the matter fields
in the GR solution are stationary, axisymmetric and pos-
sess an invertible stress-energy tensor. That is, our con-
clusion holds for a gravitational theory minimally cou-
pled to an ordinary matter source, such as a perfect fluid
that satisfies the same symmetries as the metric (i.e. sta-
tionarity and axisymmetry).

We stress that our results only apply to solutions that
reduce to a GR solution in the limit when the perturba-
tive parameter α goes to zero. In general, this does not
have to be the case, as other branches of solutions may
be entropically favoured, as is the case in theories that
exhibit spontaneous black hole scalarization [34, 35].

The requirement that the fields are stationary and ax-
isymmetric (and invertible if of spin-1) is a sufficient but
not a necessary condition for the solution to be circu-
lar, and it is not necessarily required by the isometries of
the spacetime. There are cases in which the extra fields
can be time- and angle-dependent, yet this dependence
does not manifest itself in the gravitational equations.
For example, there are hairy, nonlinear black hole solu-
tions and solitonic solutions that arise in GR coupled to
complex and massive (scalar) fields [74–77], where the
metric is circular while the fields have time- or angle-
dependent phases. Other examples are the stealth black
holes of [78], in which the scalar field has a linear time
dependence, although such black hole solutions usually
suffer from a strong coupling problem [79–81].

Our results do imply that if a theory satisfies the con-
ditions of our theorem, then all black hole solutions must
have a circular spacetime, but the converse is not neces-
sarily true. Imagine one were to find a black hole solu-
tion in a modified theory (in which our theorem does not
apply) by requiring a priori that the spacetime be cir-
cular. The existence of this solution does not then mean
that other non-circular solutions do not exist. For ex-
ample, black hole solutions have been found in Einstein-
Yang-Mills theories with [82] and without [83] a dilaton
field, and in Einstein-æther theory in the slow-rotation
approximation [84, 85] assuming a priori that the space-
time must be circular. In both cases, however, our the-
orem does not apply because either the Yang-Mills vec-
tor gauge field is non-invertible after gauge fixing or the
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æther field is non-invertible because of its timelike con-
straint. Thus, the existence of those solutions does not
imply that other non-circular black hole solutions do not
exist in these theories, which could be explored further.
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