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Majorana fermions exist on the boundaries of two-dimensional topological superconductors
(TSCs) as charge-neutral quasi-particles. The neutrality makes the detection of such states chal-
lenging from both experimental and theoretical points of view. Current methods largely rely on
transport measurements in which Majorana fermions manifest themselves by inducing electron-pair
tunneling at the lead-contacting point. Here we show that chiral Majorana fermions in TSCs gener-
ate enhanced local optical response. The features of local optical conductivity distinguish them not
only from trivial superconductors or insulators but also from normal fermion edge states such as
those in quantum Hall systems. Our results provide a new applicable method to detect dispersive
Majorana fermions and may lead to a novel direction of this research field.

The detection and manipulation of Majorana fermion
in solids is a keen issue from the viewpoints of both
fundamental physics and applications [1, 2]. Majorana
fermions are neutral and almost free from interactions.
Therefore, it is a challenge to observe and explore ex-
perimentally the physical consequences of the Majorana
fermions in solids. Topological superconductors (TSCs)
[3, 4] are regarded as promising candidates to realize Ma-
jorana fermions, where the Majorana bound state appear
at the core of the vortex under magnetic field or the prop-
agating Majorana edge channel exists at the boundary of
the sample [5–9].

Scanning tunneling spectroscopy (STM) is a power-
ful tool to detect the Majorana bound state at the zero
energy [10–15]. However, there are other possible rea-
sons for the bound states near zero at the core of the
vortex, and it is difficult to exclude these other possibili-
ties. Recent advances are the detection of the quantized
conductance G = (2e2)/h [16], and the high resolution
STM at low temperatures [12]. On the other hand, the
propagating Majorana edge channel is less investigated.
The half-quantization of the conductance, G = e2/2h , in
the structure made of quantized anomalous Hall system
and superconductor on the surface of topological insu-
lator was proposed to be an evidence for this Majorana
edge channel [8, 17, 18]. However, other possible reasons
to explain the half-quantization of the conductance were
proposed [19, 20], and hence the situation is not convinc-
ing yet. STM could be useful also for the Majorana edge
channel [21], but the energy dispersion gives the finite
density of states for the local probe, not the sharp peak.
Therefore, it is desired to explore the spectroscopy of the
Majorana edge channel more in depth.

Microwave spectroscopy with spatial resolution has
been applied to the quantum Hall systems [22] and re-
cently also to the quantized anomalous Hall systems [23].
The low frequency optical conductivity and dielectric
function can be detected as functions of spatial position,

and the response of the chiral edge channel has been
successfully observed. This is reasonable because the
chiral edge channel is gapless and metallic. Majorana
edge channel is, on the other hand, neutral and hence
naively does not respond to the electromagnetic field.
This can be understood from the identity γ = γ†and
γ†γ = γ2 = constant for the creation and annihilation
operators of Majorana fermion. Therefore, the continu-
ity equation of charge appears to require ∇ · J = 0 (J :
current density) which prohibits current response in one
dimension. However, the exchange of charge between the
edge and bulk occurs as has been discussed in quantum
Hall system [24], topological insulator [25], and topolog-
ical superconductor [25].

In this paper, we investigate the local optical conduc-
tivities, σxx(ω), of two-dimensional (2D) TSCs, espe-
cially of their Majorana edge channels. We start with
a model of spinless p + ip SC where the Majorana edge
modes generate a frequency-dependent signal. This is
followed by a 1D effective model analysis, which pro-
vides a clear physical picture about the origin of the
Majorana signals and predicts the frequency dependence
σxx(ω) ∼ ω2. Such a result is in sharp contrast to the
ω-independent one of normal edge modes. The optical
signals across the topological phase transitions are stud-
ied with a model of quantum anomalous Hall (QAH) in-
sulators in proximity to a SC.

2D p+ip-superconductors — Consider a 2D spinless
p + ip superconductor described by the following tight-
binding Hamiltonian,

Hp+ip =
∑
r

∑
d=±x̂,±ŷ

[−tψ†rψr+d + (∆dψ
†
rψ
†
r+d + h.c.)]

−
∑
r

(µ− 4t)ψ†rψr, (1)

where the summation
∑

r is over the sites on a two-
dimensional square lattice which is infinite in the x-
direction but finite along the y-direction. t is the hop-
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FIG. 1. The frequency dependence of local longitudinal opti-
cal conductivity on the edge of a spinless p+ip superconductor
for various values of chemical potential µ. The dashed curves
are calculated at a region in the bulk. The inset shows the
evolution of the edge states as µ varies. Other parameters:
lattice size along y-direction Ly = 60, hopping t = 1 is used

as the energy unit, pairing amplitude ∆ = 0.2
√
t/µ, temper-

ature kBT = 0.001. The spot size is X = 1 and Y = 4.

ping, µ is the chemical potential and ∆d is the pairing
between neighbouring sites, given by ∆±x̂ = i∆±ŷ = ±∆
where x̂ and ŷ are unit vectors along x- and y-directions
respectively. Quasi-1D chiral Majorana states appear on
the edges when 0 < µ < 8t. The x-direction current
density operator is jx(r) = i(et/~)(ψ†rψr+x̂ − h.c.) and
the current operator in a finite region 0 ≤ x ≤ X and
0 ≤ y ≤ Y is

Jx(r) =
1

X

X∑
m=0

Y∑
n=0

jx(r +mx̂ + nŷ). (2)

Assuming that the light only shines on this re-
gion, one obtains the optical conductivity σ(ω, r) =
ω−1

∫∞
0
dteiωt〈[Jx(r, t), Jx(r, 0)]〉, where ω is the photon

frequency and this formula is calculated using the Green’s
functions.[26]

The real-part conductivities for various values of chem-
ical potential µ are shown in FIG. 1, with the tempera-
ture T = 0.001/kB (the T -dependence is shown in [26])
and the spot size X = 1, Y = 4. From the bulk values
of <[σxx(ω, r)], i.e. the dashed curves in FIG. 1, we can
tell the optical gap is 2∆g ≈ 0.37 and thus the bulk su-
perconductivity gap ∆g ≈ 0.18. The pairing amplitude
varies with µ so that the bulk gap keeps approximately
unchanged. The ω-dependence of <[σxx(ω, r)] shows a
peak near ~ω ≈ ∆g. At energies higher than the peak
position, the curves start to increase again due to the
joining of the bulk states when ~ω > ∆g. That is, a
photon may create an in-gap Majorana state along with
a bulk state whose energy is larger than ∆g, giving a
contribution to the optical conductivity. For ~ω > 2∆g,
the main contribution comes from the bulk and thus the
positions in the bulk and on the edge give similar results.
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FIG. 2. (a) Schematic energy spectrum of chiral normal
fermions. A photon can excite an electron in the Fermi sea to
a state above the Fermi energy when the excitation is local,
i.e., the momentum conservation is broken. (b) For Majorana
fermions, the wave vector is limited to k > 0. A photon can
create a pair of Majorana fermions from a Cooper pair. (c)
The real part of optical conductivity <[σ(ω)] due Majorana
states shown in (b).

The results with different values of the chemical potential
µ are similar. But the magnitude in the small frequency
regime increases as we increase µ since the dispersion be-
comes flatter, giving a larger density of states, as shown
in the inset of FIG. 1.

1D analysis — To understand the origin and the
features of the optical conductivity contributed by the
Majorana edge modes, it is helpful to do a 1D analysis
with the effective edge Hamiltonian

Heff = −iv
∫ L

0

dxγ(x)∂xγ(x). (3)

where γ†(x) = γ(x) is the edge Majorana field opera-
tor. For convenience, we shall rewrite it in reciprocal
space using the transformation γ(x) = 1√

L

∑
k>0[γke

ikx+

γ†ke
−ikx], where L is the length of the hypothetical 1D

system. The Hamiltonian becomes

Heff =
∑

0<k<∆/v

vkγ†kγk, (4)

where we apply the energy cut-off ∆ which can be re-
garded as the bulk energy gap of a TSC.

For normal chiral fermions, the ground state is ob-
tained by occupying the states below the Fermi en-
ergy. Photon absorption happens by exciting elec-
trons to higher-energy empty states, as shown in
FIG. 2(a). In contrast, the ground state of a TSC
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with chiral Majorana modes consists of a Cooper
pair condensate and the absorption of photons breaks
Cooper pairs into Majorana modes, as shown in FIG.
2(b). The resulting optical conductivity is σ(ω, q) =
(ωL)−1

∫∞
0
eiωtdt〈[J†(q, t), J(q, 0)]〉, where

J(q) =
e~
m∗

∑
k>0

[(q + 2k)θq+kγ
†
k+qγk + (

q

2
− k)θq−kγ

†
q−kγ

†
k

+ (q/2 + k)θ−(q+k)γ−(q+k)γk], (5)

is the edge current operator obtained by projecting the
bulk one onto the Majorana edge states.[26] The parame-
ter m∗ is the effective mass which depends on the specific
system. In chiral p-wave SCs, m∗ is just equal to the bulk
electron mass [27].

At T = 0, the real part of the optical conductivity is

<[σ(ω, q)] =
e2

6~
(~ωξkc)2

∆4
δ(q − ~ω/v)

×


1, ~ω/∆ ∈ [0, 1],(

2∆
~ω − 1

)3
, ~ω/∆ ∈ [1, 2],

0, ~ω/∆ > 2.

(6)

where kc = ∆/v and ξk = ~2k2

2m . To relate to op-
tical microscopy measurements, let us assume the de-
tecting light to have a Gaussian-distributed intensity
g(x) = exp(−x2/d2). Then, the quantity detected with
optical microscopy methods is

σ(ω) =
1

πd2

∫
dx

∫
dx′g(x)g(x′)σ(ω;x− x′), (7)

=[σ(ω)]d=0 exp{− (dkc)
2

2

(~ω)2

∆2
}. (8)

The real part of [σ(ω)]d=0 is simply given by the right-
hand-side of Eq.(6) with the delta function omitted.

In FIG. 2(c), <[σ(ω)] at T = 0 is shown for various
values of light distribution width d. The real part of zero-
temperature optical conductivity vanishes at ω = 0 and
increases quadratically for small ω. As the frequency be-
comes large, the number of processes to absorb the pho-
ton with frequency ω starts to decrease and thus <[σ(ω)]
shows a peak. When ~ω > 2∆, the photon energy ex-
ceeds the sum of any two Majorana fermions’ and thus
absorption cannot happen, yielding zero <[σ(ω)]. Al-
though the static (ω = 0) local conductivity vanishes
at T = 0, it is non-zero when T > 0. In fact, for
kBT � ∆, considering the Fermi distribution of the
quasi-particles, we obtain the on-site (d = 0) response

<[σ(ω = 0;T )d=0] = e2

3h

ξ2kc

∆4 (πkBT )2.
When d = 0, the peak is at ~ω = ∆. The sharpness of

the peak comes from the abrupt energy cut-off assumed.
If the light shines on a finite region and thus d is in-
creased, the signal is reduced because the translational
symmetry is gradually recovered and the transition be-
tween states with different momenta is suppressed. Also,

the peak position of <[σ(ω)] is shifted towards lower fre-
quencies since larger d means that low-wave-vector (low-
energy) states contribute more than high-wave-vector
ones and thus the low-frequency response is enhanced
relatively. For large dkc, the peak position according to
Eq. (8) is at ~ω0/∆ =

√
2/(dkc) where the peak height

is <[σ(ω0)dkc�1] = e2

h

ξ2kc

3∆2

exp{−1}
(dkc)2 . Thus the signal de-

creases as ∼ d−2 when d increases.
As we have seen, the 1D analysis is entirely consis-

tent with the previous numerical results of the 2D p+ ip
TSC. It clarifies the origin of the optical conductivity and
the reasons behind the frequency dependences through-
out the sub-gap regime. Furthermore, the 1D results
are helpful to a realistic estimation of Majorana-mode-
induced <[σxx(ω)], since they apply to various systems.

For example, assume the Majorana fermions to be the
edge states of a 2D TSC with an energy gap ∆ ≈ 10−4µ,
µ being the chemical potential. Then kc is basically the
Fermi wave vector kF and thus ξkc ≈ µ. If kc ≈ kF ≈
1Å−1 and d ≈ 1µm so that dkc ≈ 104. The peak position
in the case of chiral Majorana modes is ~ω0/∆ ≈ 10−4

and the peak height is about 0.1e2/h, comparable to the
0.5e2/h of the chiral normal fermions.

If d is reduced by one order of magnitude (d ∼ 0.1µm),
the Majorana signal is enhanced by 100 times, becoming
much larger than in the normal case. Such strong op-
tical response of Majorana fermions is due to the large
density of states N . Assuming linear dispersion, we have
N = 1/v = kF /∆. With given kF , small gap ∆ indicates
a small v, giving a large N . For normal chiral fermions,
the current operator is proportional to v and thus the
enhanced density of states is compensated by the reduc-
tion in the current operator, resulting in the constant
conductivity. However, for Majorana fermions, J ∝ ~k

m
(Eq.(5)) does not depend on v. The enhancement in N is
not compensated and the optical response becomes large.
Recently, a microwave microscopy experiment with an ul-
trahigh spatial resolution of 5nm has been reported. [28]
With this size used for d, <[σxx] achieves 4000e2/h.

For comparison, the optical conductivity of normal chi-
ral fermions (as illustrated in FIG.2(a)) can be calculated
in a similar way and it is a constant <[σN (ω)] = e2/2h
when ~ω < ∆ and kBT � ∆.

Transition between QAH and TSC — Consider the
following 2D Hamiltonian [7],

H =
∑
k

ψ†s(k)[M(k)σzss′ +A(k · σ)ss′ − µδss′ ]ψs′(k)

+
∑
k

ψ†s(k)∆sciσ
y
ss′ψ

†
s′(−k), (9)

where M(k) = Mz + tk2 and σ = (σx, σy, σz) are Pauli
matrices. (They should not cause confusion with the no-
tation of conductivity.) The constant ∆sc is the s-wave
SC order parameter, t is hopping, A is spin-orbit cou-
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FIG. 3. The real part of the optical conductivity across the
phase transition from a quantum anomalous Hall (QAH) in-
sulator (µ = 0.2) to a topological superconductor (TSC) with
single Majorana edge mode (µ = 0.6 and µ = 1). All the three
cases have Mz = −0.5. Solid curves are results on the edge
and dashed ones are for the bulk. The grey curve is for a triv-
ial insulating phase with µ = ∆sc = 0 and Mz = 0.25. Other
parameters in Eq.(9) are t = A = 1 (regarded as the energy
unit), ∆sc = 0.2, and kBT = 10−3. The dots in the inset,
with colors corresponding to the curves, shows the positions
of chosen parameters in the topological phase diagram.

pling and Mz is magnetization. Depending on Mz,∆sc

and µ, this model has three topologically distinct phases.
A TSC with single chiral Majorana edge state is realized
when µ2 +∆2

sc > M2
z . When µ2 +∆2

sc < M2
z , it is a QAH

insulator if MzA < 0, and a trivial insulator if MzA > 0
[7].

By varying µ and keeping Mz and ∆sc unchanged, we
can drive the system from a QAH phase to a TSC that
has a single chiral Majorana edge mode. The local opti-
cal conductivities for three typical values of µ is shown in
FIG. 3. When it is a QAH insulator (µ = 0.2), the opti-
cal conductivity on the edge is almost an ω-independent
constant. The value is lower than e2/2h because the spot
size along the transverse direction (Y ) is not large and
only part of the edge state is covered. In the TSC phase,
there are two typical kinds of curves. One of them has
a peak at ω = 0 while the other has a peak at finite ω.
This is due to different dispersion relations of the Majo-
rana edge states as shown in FIG. 4. When µ is above
and close to the critical value µc =

√
M2
z −∆2

sc = 0.46,
the dispersion of the edge state is not monotonic. In
fact, the spectrum crosses zero-energy three times. As
µ increases, the edge dispersion becomes monotonic af-
ter a Lifshitz transition at µ = 0.6. Near this point the
edge modes becomes very flat. The flat dispersion results
in a divergent density of states at zero energy and thus
a peak of <[σxx(ω, r)] appears at zero frequency. This
peak moves to a higher frequency as µ further increases
and the dispersion becomes more and more linear (say at
µ = 1). Then, it starts to look similar to the results of
previous models. The results for a trivial insulating phase

FIG. 4. The evolution of band structures as the chemical
potential µ changes, obtained from Eq.(9). The boundaries
in the y-direction are open. Note that there are two chiral
Majorana modes corresponding to the two edges. Also, the
redundant degrees of freedom (the Majorana modes at k < 0)
are present here which are not independent.

(Mz = 0.25,∆sc = µ = 0) are also shown in FIG. 3 for
comparison. The optical conductivity vanishes when the
frequency is lower than the insulating gap (around 0.5).
Above that, it becomes non-zero. The smallness of <[σ]
is due to the small density of states (because of numerical
finite-size effect) near the gap, as seen in FIG. 4.

Conclusion and discussion — We have shown that
chiral Majorana edge states in TSCs can be detected by
measuring the local optical conductivity. Compared to
normal edge states, the signals of Majorana fermions is
comparable or even stronger, and it shows qualitatively
distinct features such as the frequency and temperature
dependencies , i.e. <[σxx]T=0 ∼ ω2 and <[σxx]ω=0 ∼ T 2,
for small ω and T . [26] Also, near the topological phase
transition from a QAH insulator to a TSC, the Majorana
fermions have rather flat energy dispersion and the low-
frequency optical response becomes gigantic.

Only the real part of the optical conductivity <[σ(ω)] is
discussed here. The imaginary part =[σ(ω)] may also be
measured with optical microscopy methods. However, in
superconductors, a purely imaginary diamagnetic term,

inse
2

mω , always appears. In some circumstances it may be
used to distinguish p-wave superconductors from conven-
tional ones [29, 30]. But in our case, it surges up at the
low-frequency limit and thus not really informative about
the Majorana edge states.

One way of realizing the chiral Majorana modes de-
scribed by our theoretical models is to use the surface
states of topological insulators such as Bi2Se3 [26]. In this
case, the chemical potential µ should be inside the surface
magnetization gap (∆m ∼ 50meV [31, 32] ). Assuming
µ = 50meV , the SC gap ∆sc = 0.1meV and the detection
spot size d = 5nm [28], we estimate that the optical con-
ductivity has a maximum value of <[σxx(ω0)] ≈ 10e2/h
at the peak position ~ω0 ≈ 0.003meV , or ω0 ≈ 4.5 GHz.
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