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Understanding the flow created by particle motion at interfaces is a critical step toward under-
standing hydrodynamic interactions and colloidal self organization. We have developed correlated
displacement velocimetry to measure flow fields around interfacially trapped Brownian particles.
These flow fields can be decomposed into interfacial hydrodynamic multipoles, including force
monopole and dipole flows. These structures provide key insights essential to understanding the
interface’s mechanical response. Importantly, the flow structure shows that the interface is incom-
pressible for scant surfactant near the ideal gaseous state and contains information about interfacial
properties and hydrodynamic coupling with the bulk fluid. The same dataset can be used to predict
the response of the interface to applied, complex forces, enabling virtual experiments that produce
higher order interfacial multipoles.

Brownian motion of particles at interfaces reveals the
complex physics of these layers via the fluctuation dis-
sipation theorem (FDT). The FDT guarantees that the
measurement based on Brownian motion, as here, and
an active measurement must have strictly corresponding
mechanical properties. Thermal energy moves a particle,
and the resulting flow generates a resisting drag force
[1–3]. These thermally induced flows result in correlated
motion of the particles, used in techniques like two-point
microrheology [4–10] to measure the rheological proper-
ties of fluids and to understand many biological processes
[11–14]. Here, we introduce ‘correlated displacement ve-
locimetry’(CDV) to measure and visualize the field of
nanoscale displacement induced by one or more colloidal
particles undergoing thermal motion.

The far field displacement due to motion of a single col-
loid approximates the interfacial flow field induced by a
point force on the interface, which we term an interfacial
Stokeslet. Simultaneous motion of multiple particles gen-
erates higher order flow singularities. We measure these
higher order flow singularities by designing virtual exper-
iments that map out displacement fields induced by the
relative motion of particles. Through these virtual ex-
periments, we can predict the outcome of applying forces
to multiple points by averaging over a sub-ensemble of
the data.

The measured displacement field provides key insights
for flow structures essential to understand mechanical re-
sponse of the interface. Through this measurement, for
instance, we show that a fluid interface with trace sur-
face active compound is incompressible, while the surface
pressure is detectable only using the most stringent meth-
ods, e.g. micromanometry [15, 16]. Furthermore, partic-
ular aspects of the flow structure depend on the surface
viscosity and the contribution of bulk forces. This depen-
dence provides a window to bound the surface viscosity
with exquisite sensistivity. Thus, we are able to detect
the presence of scant surfactant by visualization of the
flow structure and by bounding the surface viscosity to
be less than 1× 10−10 Pa s m. The far field flow induced

by higher order force singularities confirms the linear re-
sponse of this interfacial system.

Throughout this paper, we study the motion of par-
ticles at the interface of a viscous fluid. The displace-
ment field U measured over small lag time τ is related
to the velocity field by u ≈ U(τ)/τ . By determining U ,
we measure the flow around micron size colloids under-
going purely Brownian motion. Spheres with diameter
a = 1 µm, trapped at the air-water interface, Fig. 1(a),
diffuse over time. We track the particles over time t
by careful particle tracking [17, 18]. We then calcu-
late their displacement as a function of lag time τ as
∆ri(t, τ) = ri(t+τ)−ri(t), where ri is the position vec-
tor of particle i. The sample vector field of displacements
of individual particles, shown in Fig. 1(b), indicates no
apparent spatially correlated flow field. However, by
proper ensemble averaging and consideration of the cor-
relation field, we measure the displacement field induced
by the motion of these Brownian particles, Fig. 1(c).

To measure the flow field, we choose any one of these
particles as a source for the displacement. We label its
displacement vector ∆rs(t, τ). We construct a new co-
ordinate system with its origin centered on the source
particle, rs(t), and with the Y axis along the direc-
tion of ∆rs, the inset of Fig. 1(b). We then transform
the displacement of all other ‘probe’ particles (labeled
with superscript p) to the shifted coordinate system as
Rsp(t) = rp(t) − rs(t). We repeat this process, allow-
ing each particle to be a source, one at a time. Next,
we form ensembles of probe particles based on their rel-
ative locations with respect to the source particles. The
displacement field at R is then measured by conditional
averaging as

U(R, τ) =

∑
s

∑
p
w(Rsp,R)∆rp(τ)∑
s

∑
p
w(Rsp,R)

. (1)
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FIG. 1. (a) Particles at the air-water interface are moving
randomly as shown in (b) for τ = 0.04 s. Vectors are scaled
up by a factor of 103; inset shows a coordinate system located
on the original position of particle s with the Y axis aligned
with particle displacement. c) Displacement at the interface
induced by the motion of colloids captured by the correlated
displacement velocimetry. Streamlines indicate the local di-
rection of the displacement, and the color scheme indicates its
magnitude. The scale bar is 20 µm. (d) Spatial decay of in-
terfacial Stokeslet; symbols show measured velocity by CDV,
and lines are the best fit to uy |x=0= Φ‖f and uy |y=0= Φ⊥f .
Displacement field for an interfacial Stokeslet flow at (e) an
ideal compressible interface and (f) an incompressible inter-
face.

Here, w is the binary weighting function given by

w(Rsp,R) =

{
1 |R−Rsp|< ∆R ∧ |θ − θsp|< ∆θ

0 otherwise,

(2)
where R = |R|, θsp = 6 (∆rs,Rsp) gives the angle from
∆rs to Rsp, and ∆R and ∆θ are the radial and angular
bin sizes, respectively. By capturing a large data set, we
ensure that the ensemble average of each bin is statisti-
cally significant, U > σ/

√
N , where σ is the standard

deviation of the displacement of all the probe particles in
the ensemble, and N is the ensemble size. The displace-
ment field shown in Fig. 1(c) is generated by the net ther-
mal displacement of particles, 0.25 µm, over 0.04 s, and it
is identical to the flow field theoretically predicted for a
driven colloid trapped at an incompressible interface [19].
To capture this field, ∼1011 particle displacement pairs
have been used [20]. To avoid high probe density, we
record over prolonged times (3 minutes). By keeping the
surface density of the probe particles small, ψ ≈ 0.001,
we also avoid formation of a 2D colloidal crystal struc-
ture [24], so electrostatic repulsion between particles can
be neglected [25–27]. Supporting analysis of electrostatic
repulsive forces between particles is given in SM [20, Fig.
S8-9].

This procedure is in fact identical to measuring the
correlation field between particles,

C(R, τ) = 〈χsp(t, τ) δ2D[R−Rsp(t)]〉t,sp, (3)

where χspij (t, τ) = ∆rsi (t, τ) ∆rpj (t, τ), 〈·〉t,sp is the average

over time and particle pairs, and δ2D is the 2D Dirac

delta. U(R, τ) = 〈∆r2(τ)〉−1/2C(R, τ) · êy leads to the
displacement field similar to Eqn. (1).

The interfacial Stokeslet flow at an ideal interface, ab-
sent surface active agents, shown in Fig. 1(e), is the
same as a Stokeslet in a fluid of viscosity η/2, ui =
fj(RiRj/R

3 + δij/R)/4πη, where f and η are the in-
terfacial Stokeslet strength and the sum of viscosities of
two fluids above and below the interface respectively [19].
This flow field corresponds to a compressible interface
with ∇s · u = f ·R/(2πηR3), where ∇s is the 2D (sur-
face) gradient operator. Interestingly, however, the flow
field measured in Fig. 1(c) is surface-divergence free, in-
dicating incompressibility of the interface [20, Fig. S1].
Therefore, the measured flow field, remarkably, shows the
pronounced effect of trace surfactant rendering the inter-
face incompressible. This observation indicates that, for
the thermally induced flow field, viscous stresses are so
weak that Marangoni stresses significantly reorganize the
interfacial flows even for a highly expanded surfactant
film in a surface gaseous state [19].

While in our experiments, we took pains to avoid
surfactant contamination, the surface pressures Π <
8× 10−5 N m−1(See SM[20, Fig. S3]), likely from trace
impurities related to water sample, the experiment cylin-
drical vessel, and the probe particles [28]. To remove
ambiguity of the effect of impurities on the flow field, we
form a monolayer of 1-decanol surfactant at the air-water
interface in gaseous state (see SM [20, section 9]). For
this deliberately-added surfactant in the gaseous state,
the surface pressure gradient is strong enough to ren-
der the interface incompressible. The relative impor-
tance of surface pressure gradients to viscous stresses
is captured in the Marangoni number Ma. The impor-
tance of the surface diffusivity of surfactant molecules
can be captured by the product of the Marangoni and
Peclet numbers. For the thermally driven system, Ma =
Γ̄
√
kBTaτ/η, where Γ̄ is the average surface concentra-

tion of surface active agents, kB is Boltzmann’s constant,
and T is the temperature. Furthermore, we show that
MaPe = Γ̄asa, where as = kBT/Dsη is the effective size
of the surfactant molecules, and Ds is its diffusion coef-
ficient [20]. Further, analysis suggests that efforts to re-
move surfactant from the interface would not remove this
effect. To extract a bounding value for Ma in the most
stringent circumstance, we consider undetectable surface
pressure Π = 10−5 N m−1, where the surfactant concen-
tration is as small as Γ̄ = 103 molecules/µm2. For this
concentration, we estimate Ma ≈ 400 and MaPe ≈ 40,
indicating that Brownian motion of particles cannot com-
press the interface even for highly expanded gaseous
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monolayers of surfactant, and surface diffusivity of sur-
factant is insufficient to generate mass flux. We expect
that this incompressible interfacial Stokeslet flow field
is typical for interfacially trapped colloids moving under
external forces, in systems with high Ma and scant sur-
factant [19, 29].

Subtle features in this measured flow field are impor-
tant in understanding the interfacial mechanics. A point
force exerted at distance |z|= h from an interface that
is both incompressible and has finite surface viscosity ηs
induces an interfacial flow field

ui =
Φ0 − Φ2

4πη
fi +

Φ2

2πηR2
RiRjfj , (4)

where Φn(ls;R, z) =
∫∞
0

dk e−khJn(kR)/(1 + lsk), Jn is
the Bessel function of the first kind of order n, and ls =
ηs/η [19]. This response of the interface to the point
force depends explicitly on the ratio of the surface to
bulk viscosity and implicitly on the Marangoni stresses
that enforce the incompressibility of the interface. The
corresponding asymptotic form for ls, h� R

ui = (Φ‖ − Φ⊥)
RiRjfj
R2

+ Φ⊥fi +O(R−3), (5)

where Φ‖ = (2πηR)−1 and Φ⊥ = (ls + h)(2πηR2)−1,
shown in Fig. 1(f). The system, for force in the y direc-
tion, has y-directed flow on the axes of uy |x=0= Φ‖f and
uy |y=0= Φ⊥f (See SM [20]).

Figure 1(d) shows the velocity along the y and x
axes obtained from the displacement map in Fig. 1(c).
We estimate the interfacial Stokeslet strength to be
f = 4.7× 10−14 N by fitting Φ‖f to the measured val-
ues uy|x=0 and assuming η = 1.0 mPa s. The observed
uniform 1/R decay of uy|x=0 indicates that the measure-
ment domain corresponds to a far-field regime for which
R � ls; else, the flow would have decayed logarithmi-
cally. Further, the observed uy|y=0 decays as 1/R2, also
in agreement with far-field prediction; the predicted de-
pendence of this quantity on ls and h allows bounding
values to be extracted. Fitting uy|y=0 in Fig. 1(d) to its
predicted form with h = 0, we find the upper bound on
ls = 0.073 µm, providing an upper bound on the surface
viscosity of ηs = 7.3× 10−11 Pa s m. A particle trapped
at the interface, however, exerts forces on the interface
and the bulk fluids by point forces distributed over the
entire probe surface. When ls < a, contributions of the
bulk force on the interfacial flow cannot be neglected a
priori. In this case, Φ⊥ ' (ls + lb)(2πηR

2)−1, where lb is
a length scale that establishes the net effect of the bulk
force on the interfacial flow. Interestingly, our flow mea-
surement indicates that lb cannot be larger than 0.073 µm
for our 1 µm probes. This upper bound on lb indicated
that the drag force on the particle is mainly located near
the interface. The similar result is observed in the mono-
layer of 1-decanol surfactant in the gaseous state [20,
Fig. S12].
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FIG. 2. (a) Distribution of the drag coefficient; symbols are
measured value with line showing the best fit to the model.
(b) Drag coefficient of particles at different neighborhood of
the interface. Color and size of each circle indicate its drag
coefficient. The sample trajectories with large and small mo-
bility are shown with blue and orange lines respectively.

It is possible for the probe particles themselves to form
a 2D viscous suspension at the fluid interface. How-
ever, in all data reported here, the surface concentration
is sufficiently dilute (approximately 100 spherical par-
ticles in the field of view with area of A = 0.2 mm2)
that such effects are negligible. For ψ � 0.1, the sur-
face viscosity induced by the particles can be estimated
as ηparticless ≈ 0.9ηaψ [30] which means in our system
ηparticless ≈ 0.9× 10−13 Pa s m. Thus, while the 2D sus-
pension of particles could, in principle, contribute to the
surface viscosity, this effect is negligible in our system.

By the FDT, the rms magnitude of the net stochastic
force acting on particles in a purely viscous system [31]
over τ � m/γ is frms =

√
2γkBT/τ , where γ and m

are the drag coefficient and mass of the particle. This
allows us to extract a value for the drag coefficient on
our particles from our measurement. (FDT holds for our
system since the interface is linear, incompressible, and
in equilibrium [20, Fig. S7]. These properties preclude
anomalous collective diffusion of colloidal particles pre-
dicted for particles on a compressible fluid-fluid interface
[32–34]).

Using the force value fit to the far field flow velocity,
we estimate γ = 1.09× 10−8 Pa s m. We confirm the reli-
ability of the CDV method by comparing this estimate to
the drag coefficient determined by conventional particle
tracking. By investigating the thermal motion of indi-
vidual particles through analyzing their mean squared
displacement [20, Fig. S5], we determine their transla-
tion diffusion coefficient D. We obtain the drag coef-
ficient of each particle using Stokes-Einstein equation,
γ = kBT/D, and find a wide distribution of drag coef-
ficients, Fig. 2(a). This broad distribution is consistent
with the literature, and associated with different trapped
wetting states [35]. The median value of the drag coef-
ficients, γ = 1.06± 0.16× 10−8 Pa s m, agrees well with
the value estimated from the far field flow, benchmark-
ing the CDV method. The broad distribution of γ from
analysis of the individual particles cannot be attributed
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to interface inhomogeneities, as there is no clear correla-
tion between particle mobility and their location at the
interface Fig. 2(b), and the characteristic decay rate of
displacement field indicates that the interface is a course-
grained homogeneous system [10, 36].

This finding indicates that ensemble motion of par-
ticles is insensitive to variation in wetting behavior of
individual probes. Finally, we note that although inter-
facially trapped particles are only partially immersed in
water, their average drag coefficient is 15% larger than
the drag coefficient for the 3D motion of a probe particle
in the bulk fluid, γb = 3πηa = 9.4× 10−9 Pa s m, a known
and interesting effect subject to ongoing discussion.

From a purely hydrodynamic perspective, the drag
on the spherical particles with contact angle φ mov-
ing in an incompressible interface with small Boussi-
nesq number Bo = ls/a � 1 obeys the relationship
γ/γb = (8/3π) cos (φ/2) [2, 37], which does not predict
larger drag on particles at the interface over those in
the bulk. We also estimate that the maximum contri-
bution of surface viscosity in the total drag on the par-
ticle is under 6% [20] based on the bounding value for
surface viscosity, as determined from the far field flow.
Boniello et al. have reported such an increase in the drag
for particles at the interface and have shown that as par-
ticles protrudes more into the less viscous air phase they
diffuse more slowly [38, 39]. They propose mechanisms
associated with hydrodynamic or thermal consequences
of contact line (de)pinning to explain this increased dis-
sipation. However, the source of such this increase in
the drag coefficient remains a subject of debate [38–42]
and is beyond the scope of the current study. Never-
theless, the wide range of the distribution of drag coeffi-
cients observed here suggests that particles are trapped
at different heights at the interface [38, 43, 44] and feel
different drag. To characterize the observed distribution,
we consider γ as a function of contact angle as reported
in [38], γ = γbF (φ), where γb and φ are random vari-
ables with normal distribution, and F is an empirical
relation that follows the experimental data [20, Fig. S6].
Since γb and φ are independent random variables, we
can determine the probability distribution of drag co-
efficient through P (γ) =

∫∞
−∞ Pγb(γb)PF (γ/γb)/γb dγb,

where PF (F ) = Pφ(φ)/(dF/dφ) [20]. A narrow range of
particle contact angle, φ = 114.0± 10.5◦, which agrees
with the reported behavior for polystyrene latex parti-
cles spread at an air-water interface [35], and particle
size a = 1.00± 0.08 µm predict the distribution of the
drag coefficient as shown in Fig. 2(a).

So far, we have measured the interfacial Stokeslet flow
by analysing displacement induced by the thermal mo-
tion of individual particles. Here, we use the relative
motion of particles to measure the flow fields induced
by higher order singularities such as interfacial stresslets.
We call these measurements virtual experiments in that
we measure the far field flow of higher order singularities

while there are no real forces in the center of the flow
fields. Let us consider two particles, s1 and s2, at dis-
tance ld from each other; the far field flow induced by
relative motion of this pair of particles will be equivalent
to flow around an interfacial force dipole that acts at
their mutual center of mass, rs(t) = [rs1(t) + rs2(t)]/2.
To measure this flow field, we need only to set up a
new ensemble of source displacements from pairs of par-
ticles that are located at distance ld from each other
with unit vector of the line between them as ês(t) =
(rs1(t)− rs2(t))/(|rs1(t)− rs2(t)|). The relative motion
along ês (extensional mode) is

∆rs‖(t, τ) = (∆rs1(t, τ)−∆rs2(t, τ)) · ês(t), (6)

and their relative motion normal to ês (shear mode) is

∆rs⊥(t, τ) = (∆rs1(t, τ)−∆rs1(t, τ)) · (ês(t)× êz). (7)

To measure U induced by these dipolar modes, we locate
the coordinate system at rs(t) and align the Y axis with
ês(t) to form Rsp that connects the center of the dipole
to the position of probe particles. We then measure the
correlation of the probes’ displacements with the relative
motion of particles pairs, C = ∆rs‖,⊥(t, τ)∆rp(t, τ) and
finally perform following conditional averaging,

U(R) =

∑
s

∑
p
w(Rsp,R)C

〈|∆rs‖,⊥|〉
∑
s

∑
p
w(Rsp,R)

. (8)

The predicted response of the interface to a force dipole
for ls � a is obtained by taking the gradient of Eqn. (5)
with respect to R, which gives the dipole moment

ui =
qjk
2πη

[(
3− 4

ls + lb
R

)
RiRjRk
R5

−
(

1− ls + lb
R

)
Riδjk +Rjδik

R3
+ 2

(ls + lb)δijRk
R4

]
(9)

to O(R−4), where qjk is the dipole strength. Figure 3
(a and c) reveal the flow induced by a dipole formed by
the motion of particles pairs, ∆rs‖ and ∆rs⊥ respectively,
with ld = 20± 2 µm and moving over τ = 0.04 s.

The measured displacement fields accurately capture
all the far-field components of the theoretical force
dipoles displayed at Fig. 3(b and d) for q22 and q12 re-
spectively. For the extensional force dipole, or ‘interfa-
cial stresslet’ (Fig. 3a-b), the displacement field displays
characteristic 1/R2 decay, Fig. 3(e). However, the flow
induced by the sheared force dipole decays with two dif-
ferent characteristic rates. Parallel to the shear direc-
tion, the momentum is mainly transferred by the bulk
viscosity and the surface incompressibility, and flow de-
cays with 1/R2, while normal to the shear direction, the
flow decays with 1/R3 due to the surface viscosity and
bulk forces, Fig. 3(f).
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FIG. 3. (a) and (c) Displacement, U , generated by virtual
force dipoles exerted at interface by relative motion of parti-
cles pairs moving parallel (a) and normal (c) to their inter-
particle distance for τ = 0.04 s. (b) and (d) Analytical force
dipole flows obtained from the best fit to Eqn. 9. Streamlines
indicate the local direction of the displacement, and the color
scheme indicates its magnitude. (e-f) Spatial decay of the
flow field, u, along x and y axis. Symbols are the measured
velocity, dashed lines are the best fit to force dipole flows, and
dot-dashed lines are the best fit to double Stokelests flow with
center at y = ±10 µm.

In the near field, there is some deviation between the
measured flow and that theoretically predicted by the
interfacial force dipole (9), mainly because of finite phys-
ical distance between two source particles in the measure-
ment. By mathematically superimposing a pair of shifted
interfacial Stokeslets (5), one for each particle, we pre-
dict the near-field measurement with improved accuracy,
Fig. 3(e-f). This superimposability of the interfacial flow
is expected for a linear viscous and incompressible sys-
tem. However, for R � ld, the far-field approximation
provided by the extensional and shear interfacial dipoles
is accurate, Fig. 3(e-f). From the best fit to the measured
flow, we obtained |q22|= 9.8× 10−19 N m, which agrees
well with fld = 9.4× 10−19 N m. Furthermore, for parti-
cle pairs, by separating those that move toward and away
from each other into distinct ensembles, (i.e. based on the
sign of ∆r‖), we measure both extensile q22 > 0 and con-
tractile q22 < 0 interfacial stresslets [20, Fig. S13]. The
far field flow induced by these force dipoles are simply
opposite in sign, another hallmark of this system’s lin-
ear response to forces. Similarly, we find a shear dipole
strength of |q12|= 9.6× 10−19 N m. An interfacial rotlet
can be reconstructed from shear dipoles with a torque
equal to L = (q12 − q21)/2.

In this study, we demonstrate that correlated displace-
ments of collections of particles reveal the mechanics of
a weakly viscous, incompressible, Newtonian interface.
We confirmed the reliability of the CDV method by the

agreement of drag coefficients inferred from the far-field
flow and from the particles mobility. The agreement of
analytical and experimental form of flow fields for force
monopole and dipoles further support the confidence in
our method. The CDV method could be adapted to ad-
dress non-Newtonian interfaces with potentially nonlin-
ear mechanics; studies of the relative motion of particle
collections to reveal purely shear or purely extensional
displacement fields could independently measure shear
[45, 46] and extensional [47–49] surface viscosities. CDV
could also help to understand the hydrodynamic coupling
between interfaces and bulk fluids [50]. Flow induced
by higher order singularities provide insight for flows in-
duced by active colloids and active rheological probes.
For instance, a bacterium swimming at an interface is
predicted to generate a flow similar to a force dipole [19].
The flow measured around interfacially trapped bacteria
is the subject of our ongoing research.
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