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We explore the finite-temperature dynamics of the quasi-1D orbital compass and plaquette Ising models. We
map these systems onto a model of free fermions coupled to strictly localized spin-1/2 degrees of freedom. At
finite temperature the localized degrees of freedom act as emergent disorder and localize the fermions. Although
the model can be analyzed using free-fermion techniques, it has dynamical signatures in common with typical
many-body localized systems: Starting from generic initial states, entanglement grows logarithmically; in addition,
equilibrium dynamical correlation functions decay with an exponent that varies continuously with temperature and
model parameters. These quasi-1D models offer an experimentally realizable setting in which natural dynamical
probes show signatures of disorder-free many-body localization.

Introduction.—The far-from-equilibrium dynamics of iso-
lated many-body quantum systems has been a very active topic
of research in multiple fields of contemporary physics, ranging
from decoherence in quantum information theory to the black
hole information paradox [1–3]. A central topic in this field
has been the phenomenon of “many-body localization” (MBL),
by which an isolated quantum system fails to reach a local
equilibrium state starting from generic initial conditions [4–7].
In systems subject to strong quenched randomness, the exis-
tence of MBL can be proven under minimal assumptions [8].
Whether MBL can happen in systems with (discrete) transla-
tion invariance is a relatively subtle question [9–14]: in fully
generic systems of this kind, it seems likely that strict MBL
(i.e., a regime where a system never approaches equilibrium) is
impossible [15, 16], at least in the conventional thermodynamic
limit [17]. However, in many specific (albeit fine-tuned) mod-
els, disorder-free localization can be established; near these
fine-tuned limits, one expects the phenomenon to persist to
long times, though perhaps not asymptotically [18–25].

Experimental studies of MBL have hitherto been conducted
mostly on cold-atom systems and other forms of synthetic
quantummatter [26–32] (apart from a few studies on disordered
semiconductors and superconductors [33–36], and a very recent
study on phonons [37]). The key condition for disorder-free
localization—namely the presence of local conserved charges
that generate intrinsic randomness in thermal states—can also
be satisfied in strongly correlated electronic systems. However,
studies of disorder-free localization in this setting have so far
focused on somewhat fine-tuned models that are of limited
experimental relevance, and on operators that are diagonal in
the conserved charges.

Here we study specific spin ladder models that are relevant to
the description of transitionmetal oxides [38], with an emphasis
on quantities that can be measured in experiment, such as the
dynamical structure factor. The models under consideration
may be mapped onto effective free-fermion models coupled
to emergent disorder provided by local Z2 conserved charges.
In contrast to previous studies, we are primarily interested
in the behaviour of operators or quantities that modify the

emergent disorder realisation. Such sector-changing operators
are specific to systems in which the disorder is emergent, and
thus the phenomenology that we consider goes beyond that of
conventional disordered systems. Specifically, we explore the
growth of entanglement and the dynamical response of these
models by relating them to Loschmidt echoes in free-fermion
systems [23]. These free-fermion methods give us access to
much larger system sizes than are usual in the study of MBL.
Our main result is that both the entanglement dynamics and the
experimentally relevant response properties of these models
follow the predictions for generic many-body localisation: en-
tanglement grows logarithmically in time [39–44] and certain
dynamical correlation functions decay with anomalous power
laws [45–49]. In light of the fact that the model is essentially
noninteracting, this behaviour is surprising. Beyond being
experimentally relevant in the study of strongly correlated
materials [38], our models afford us a level of analytical under-
standing that allows us to elucidate why disorder-free single
particle localization due to emergent randomness can give rise
to the same phenomenology as MBL.
We focus our attention on the square lattice compass

model [38, 50, 51], which may be viewed as a quasi-one-
dimensional analogue of the Kitaev honeycomb model [52].
This model is dual to the plaquette Ising model [53, 54], which
has been explored as a prototypical model with “fracton”-like
excitations, i.e., excitations whosemotion is confined to reduced
dimensions [55]. The relation between fractons and disorder-
free MBL also remains largely unexplored in the literature (but
see Ref. [56]).
Models and mappings.—We begin by introducing the com-

pass model on a two-leg ladder [38], as illustrated in Fig. 1:

Ĥcompass = −∆

L∑
j=1

X̂1, j X̂2, j −

L−1∑
j=1

2∑
α=1
Γα Ẑα, j Ẑα, j+1 , (1)

where (X̂α, j, Ẑα, j) are the usual Pauli matrices on leg α = 1, 2
and rung j = 1, . . . , L. Introducing the operators q̂z

j = Ẑ1, j Ẑ2, j

on each rung, [Ĥ, q̂z
j ] = 0 since the operators q̂z

j and X̂1, j X̂2, j
share either zero or two sites. This leads to an extensive number
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FIG. 1. Schematic depiction of the model and its mapping to a bond-
disordered transverse field Isingmodel. AKramers–Wannier duality of
the compass model (1) along the rungs isolates the conserved charges
q̂z
i
= Ẑ1,i Ẑ2,i . Within each charge sector, specified by the configura-

tion {qj }, the Hamiltonian of the η̂ spins Ĥ({qj }) corresponds to an
Ising model with nearest neighbour coupling Ji,i+1 = Γ1 + Γ2qiqi+1.

of conserved charges {qj}, one for each rung of the ladder;
since (q̂z

j )
2 = 1, the conserved c-numbers are qj = ±1. The

conserved charges q̂z
j are analogous to the Z2 gauge field in the

Kitaev model [52] and its ladder generalisations [57, 58]. The
presence of such local conserved charges is the hallmark of
disorder-free localisation [18–25].
We may then perform a 2-site version of the Kramers–

Wannier duality along the rungs of the ladder to dual spin-1/2
degrees of freedom η̂ j and q̂ j : X̂1, j X̂2, j → η̂xj , Ẑ1, j → η̂zj , and
Ẑ1, j Ẑ2, j → q̂z

j . In this language, the Hamiltonian (1) becomes

Ĥ = −∆
L∑
j=1

η̂xj −

L−1∑
j=1

(
Γ1 + Γ2 q̂z

j q̂z
j+1

)
η̂zj η̂

z
j+1 . (2)

There are three further equivalences to keep in mind. First,
the Ising Hamiltonian (2) can be transformed, via a standard
(leg-direction) Kramers–Wannier duality, to one in which
the transverse field and interaction terms are interchanged.
Second, either Ising model can be mapped to free fermions
via a Jordan–Wigner transformation. Third, one can undo
the (rung-direction) Kramers–Wannier duality to arrive at a
plaquette-Ising model with the Hamiltonian

Ĥ� = −∆
∑
j

σ̂z
1, j σ̂

z
2, j σ̂

z
1, j+1σ̂

z
2, j+1 −

∑
j

Γασ̂
x
α, j . (3)

We will treat the disorder-free spin models (1), (3) as fundamen-
tal (for the purpose of identifying local physical observables).
The full set of equivalent models is captured by Fig. 1.

Anderson localization.—The spectrum of Hamiltonian (2)
can straightforwardly be constructed for any sector of the
conserved charges {qi}. For random {qi} (e.g., in high-
temperature states), the dynamics is that of Majorana fermions
with random binary hopping. The Hamiltonian (2) has an
eigenstate phase transition [59–61] in a given sector of {qi}
when

〈
log

��Γ1 + Γ2 qjqj+1
��〉 = log |∆|, where the average is

over space. At infinite temperature this transition point is at��Γ2
1 − Γ

2
2
�� = ∆2. It separates a random paramagnet with local-

ized excitations—for which the order parameter autocorrelation
function, 〈ηzi (t)η

z
i (0)〉 = 〈Zi(t)Zi(0)〉, vanishes—from a “spin

glass” phase, in which it does not. Note that at the special

value Γ1 = Γ2 the system is always paramagnetic, according
to the criterion above. This follows because bonds for which
qiqi+1 = −1 are cut, and a finite segment of a system cannot
undergo a phase transition. The phase transition separating
these two dynamical phases is in the infinite-randomness uni-
versality class; at the transition point, the system is marginally
localized with a localization length that diverges as the single
particle energy vanishes E → 0 [62].
As one lowers the temperature, the q̂z

i become increasingly
likely to align with their neighbours, so the localization length
grows. At zero temperature, there is no randomness, and the
system undergoes a ground-state phase transition that is in the
Ising universality class. However, the system is localized at
any finite energy density above the ground state.

Entanglement growth.—Since themodel (2) has free-fermion
dynamics in any fixed sector, one can deduce that a general low-
entanglement (e.g., product) initial state that is an eigenstate of
all the q̂z

i will quickly saturate to area law entanglement—at
least away from the critical point for that sector. If we start
instead from a superposition of q̂z

i eigenstates, the entanglement
exhibits unbounded slow logarithmic growth that is charac-
teristic of MBL systems. This is our first main result, and in
what follows we explain intuitively why this happens, and then
explain how one can exploit the free-fermion character of the
dynamics in each sector to efficiently compute the entanglement
for relatively large systems.
One can imagine “integrating out” the free fermions to

arrive at an effective classical spin model with Hamiltonian
Ĥeff(q̂z

i ). This Hamiltonian has diagonal interactions that
decay exponentially in space with the characteristic fermionic
localization length. Starting from an initial superposition,
these interactions will cause slow dephasing, and thence slow
entanglement growth, exactly as in Refs. [42–44]. One can
illustrate this by considering a minimal example involving a
2×2 ladder. The Hamiltonian is Ĥtoy = −(Γ1+Γ2q̂z

1 q̂z
2)(ĉ

†

1 ĉ2 +

ĉ†1 ĉ†2 + H.c.) − ∆
∑

j(1 − 2ĉ†j ĉj ). Considering for simplicity
the sector with odd fermion parity (i.e., one fermion), the
eigenstates have energies ±(Γ1 + Γ2q1q2). Thus, if the initial
state is a superposition of different q̂z

i states, it will dephase on
a time scale ∼ 1/Γ2 [64]. The dephasing rate between pairs of
qi falls off exponentially with distance, so at time t each qi is
entangled with ∼ ξ log(t/ξ) others [42].

We now consider, more generally, an initial product state of
the compass spins |Ψ〉 = Ẑ1, j |Ψ〉 = X̂2, j |Ψ〉. It can be written
in terms of the Ising spins as

|Ψ〉 = |Φ〉 ⊗
1

2L/2

∑
qj=±1

��{qj}
〉
, (4)

where η̂zj |Φ〉 = |Φ〉 , ∀ j. As a result, the product state (4) has
an equal-weight projection onto every charge sector.
We bipartition the system leg-wise, into two ladders A and

B, each of length LA = LB = L/2:

ρ̂A(t) =
1

2LA

∑
{µ j }

Tr

[
ρ̂(t)

∏
j∈A

η̂
µ j

j

] ∏
j∈A

η̂
µ j

j , (5)
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FIG. 2. Entanglement entropy S2(t) after beginning in the translationally-invariant initial state (4) for a cut through the legs of the ladder that
splits the system into two equal halves. Left panel: After some initial transient dynamics, the S2(t) grows logarithmically in time, until it
eventually saturates due to finite size. The saturation value is consistent with volume-law growth, as shown in the inset. Systems of size L ≤ 12
(N ≤ 24 spins) are calculated using exact diagonalisation, while larger system sizes are evaluated using random sampling of Eq. (6) [63]. All
curves are calculated using parameters Γ2 = ∆ = 1, and Γ1 = 1/2. Right panel: Scaling collapse of the data for a fixed system size L = 22 for
various values of Γ1, shown prior to rescaling in the inset, confirming the scaling S2(t) ∼ ξ log(t/ξ).

where µj = 0, 1, 2, 3, η̂0
j is the identity and η̂

1,2,3
j = η̂

x,y,z
j . The

Jordan–Wigner transformation maps the Hilbert space of the
first LA spins onto the first LA fermions and thus the density
matrix of the spins and of the fermions is the same [65, 66].

We find that in terms of the η̂-spins

Tr ρ̂2
A =

1
22L

∑
{q1 }, {q2 }

TrA
[

TrB Û(qA
1 , q

B
1 )P̂ΦÛ†(qA

2 , q
B
1 )

TrB Û(qA
2 , q

B
2 )P̂ΦÛ†(qA

1 , q
B
2 )

]
, (6)

where P̂Φ = |Φ〉 〈Φ| is the projector onto the initial state of the
η̂-spins, and U(qA, qB) is the time evolution operator with a
disorder configuration specified by {q} = {qA} ∪ {qB}. The
exponentiated Rényi entropy e−S2(t) ∝ Tr ρ̂2

A may be regarded
as a disorder average over two independent charge configura-
tions {q1} and {q2}. The expression includes two forwards
time evolutions U(qA, qB), and two backwards time evolutions
U†(qA, qB), each containing a different Hamiltonian. However,
the trace enforces that the disorder configurations appearing in
these Hamiltonians are not independent. For the entropy Sα(t)
with (integer) α > 2 there exist 2α replicas of the system with
different disorder configurations correlated as per Eq. (6).

The expression (6) is evaluated numerically for α = 2 using
the free-fermion techniques described in the supplemental
material (SM) [67] and plotted in Fig. 2 for Γ2 = ∆ = 1, and
Γ1 = 1/2 (with an average localisation length ξ ' 5.32). After
some initial transient dynamics, the growth of the entanglement
entropy is seen to be logarithmic in time for sufficiently large
systems, S2(t) ∼ ξ log(t/ξ), before finite size effects become
relevant and the entropy saturates [68]. As shown in the inset,
the late-time behaviour of S2 is volume law: S2(∞) ∝ L.

We emphasize that the logarithmic entanglement growth is a
consequence of the mixing between different q-sectors in the
Ising model; in a fixed q-sector, the dynamics is described by

an Ising model with binary disorder, for which entanglement
growth saturates (away from the critical point). This is checked
explicitly in the SM [67].
Dynamical structure factor.—Logarithmic entanglement

growth, while central to the phenomenology of MBL systems,
is not realistically measurable in most experiments. In what
follows we consider an observable that is straightforward to
measure in solid-state experiments, whichwe argue also exhibits
signatures of MBL that are related to the logarithmic growth.
Let us consider the dynamical structure factor in the basis of
the compass spins Σ̂α, j , where Σ̂ = X̂, Ẑ . In particular, we are
interested in the time dependence of

〈
Σ̂α,i(t)Σ̂′β, j(0)

〉
, where

the angled brackets correspond to a finite temperature average
with respect to the canonical ensemble. The trace over charge
configurations {qj} implies that each q̂γj operator that projects
out of a given sector must appear an even number of times for
the expectation value to be nonvanishing. As a consequence,
the mixed elements XZ and ZX must vanish identically.
In the high-temperature limit, the nonzero components of

the structure factor may be written as

〈X̂1,i(t)X̂1, j(0)〉 ∝ δi jTr
[
eiĤ({q })te−iĤ

x
i ({q };−qi )t

]
, (7)

〈Ẑ1,i(t)Ẑ1, j(0)〉 ∝ δi jTr
[
eiĤ({q })te−iĤ

z
i ({q })t

]
, (8)

where the overline corresponds to an infinite-temperature av-
erage over the various charge sectors, Ĥγ

i = η̂
γ
i Ĥη̂γi , and

Ĥ({q};−qi) denotes that the sign of the spin qi on site i, has
been flipped with respect to the configuration {q} [69]. In
both cases the forwards and backwards Hamiltonians differ by
some local perturbation in the real space spin basis, and may
be evaluated efficiently using free-fermion techniques [67].

Despite the apparent similarity between the two expressions,
the behaviour of the two components is markedly different. The
reason for this difference is the absence (presence) of sector
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FIG. 3. Time dependence of the diagonal elements of the infinite-
temperature dynamical structure factor in the compass spins, X̂α, j
and Ẑα, j , for L = 48 (N = 96 spins), and Γ2 = ∆ = 1. (a) The XX
correlator exhibits a decay consistent with Eq. (9): Power law ∼ t−γ ,
with an exponent proportional to the localisation length ξ, as shown in
panel (b). Conversely, the ZZ correlator (c) is diagonal in the conserved
charges {q̂z

j
}, and hence maps directly onto the corresponding spin

correlation function of the disordered TFIM (2). The inset shows the
divergence of the time scale over which the plateau decays with system
size in the ferromagnetic phase (shown for L = 8, 16, 24, 32, 40).

changing operators q̂x
i in the ZZ (XX) correlator. The ZZ corre-

lator, being diagonal in the conserved charges, maps directly
onto the order parameter correlator of the Ising Hamiltonian
in Eq. (2), 〈η̂zi (t)η̂

z
j (0)〉, for which only the autocorrelation

function i = j is nonzero at infinite temperature [70, 71]. In
the presence of emergent randomness, the behaviour of this
correlator can be understood in the excited-state real-space
renormalization-group (RSRG-X) framework [60]. In the para-
magnetic phase, this correlator decays to zero, while in the
ferromagnet it saturates to a nonzero value. (In a finite system,
the correlator eventually vanishes, but on a time scale that
diverges with system size.) This plateau is shown in Fig. 3.
The ZZ correlator is therefore not sensitive to the emergent
nature of the disorder, and behaves identically to a TFIM in
the presence of quenched disorder. That such behaviour can
occur in translationally invariant models is worthy of note,
but has been observed before in a variety of contexts (see,
e.g., Refs. [18–25, 58]).
Conversely, the XX correlator involves both flipping Ising

spins and changing q-sector. Since the forwards and backwards
time evolutions involve different disorder realisations, the XX
component is aware of the emergent character of the disorder.
The XX correlator therefore exhibits phenomenology beyond
that of conventional disordered systems, and by extension
beyond that of operators that are diagonal in the local conserved
charges (distinguishing our results from, e.g., Ref. [58]). The
differing forwards and backwards time evolutions imply that
Eq. (7) is analogous to a Loschmidt echo after a local quench.
Treating the difference between the forwards and backwards

time evolutions as a perturbation ∼ ε(η̂z
i−1η̂

z
i + η̂

z
i η̂

z
i+1) [72], we

find that

〈X̂1,i(t)X̂1,i(0)〉 ∼
L∏

n=1
cos

(
ε t[ψn

i−1φ
n
i + ψ

n
i φ

n
i+1]

)
∼

(
ε t
ξ

)−cξ
,

(9)
where the matrices ψn

j and φ
n
j diagonalise the fermionic Hamil-

tonian [73]. This correlation function is essentially the expo-
nentiated entanglement, and represents our second main result.
We see in Fig. 3 that this power law decay is indeed seen in
the numerics, with an exponent that is consistent with our
expectations (away from the critical point).

Discussion.—The central result of this work is that quasi-1D
compass and plaquette Ising models, which arise naturally in
various experimental settings [38], exhibit a form of disorder-
free localization that bears many of the distinctive features of
MBL. In particular, we have shown that the emergent character
of the disorder – which permits superpositions of different
disorder realisations, and operators that modify the disorder
configuration – can lead to the unbounded logarithmic growth
of entanglement and anomalous power-law decay of correlation
functions. This considerably broadens the scope of candidate
materials for studying MBL and its dynamical signatures.
We established our results in a model that was solvable

using free-fermion techniques; remarkably, the slow growth of
entanglement, despite being inherently an interaction effect, is
present in these free-fermion models because (as we explained
here) integrating out the fermions gives rise to diagonal inter-
actions and thus exponentially slow dephasing between distinct
configurations of conserved variables. (Related phenomena had
previously been found in out-of-time-order correlators [23, 74].)
As we argued, this slow dephasing also manifests itself in more
experimentally accessible variables, such as the XX component
of the dynamical structure factor. Note that, while logarithmic
growth of entanglement is also seen in some other models with
divergent localization lengths [75] or strong zero modes [74],
the compass model in its paramagnetic phase exhibits neither
of these features. Given the close parallels between the entan-
glement growth here and the physics of Loschmidt echoes for
free fermions, the present model raises the prospect of deriving
exact expressions for the asymptotics of entanglement and cor-
relation functions, via solving a Riemann–Hilbert problem [76];
this is an interesting topic for future work.
A natural question our results raise is what happens for

ladders with more than two legs. These systems still have one
local conserved charge per rung (i.e., the product of X̂ operators
along the rung), which can generate emergent disorder, as in
the two-leg case. They are in general strongly interacting
and do not admit free-fermion solutions, and are thus beyond
the scope of this work. For parameters where these models
have an MBL phase, its phenomenology should resemble that
studied here. However, such generic interacting models will
also exhibit a delocalized thermal phase. How sector-changing
operators like the XX correlator behave at the many-body
delocalization transition remains an open question worthy of
future consideration.
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