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We investigate the amplitude (Higgs) mode associated with longitudinal fluctuations of the order parameter
at the continuous spontaneous symmetry breaking phase transition. In quantum magnets, due to the fast de-
cay of the amplitude mode into low-energy Goldstone excitations, direct observation of this mode represents
a challenging task. By focusing on a quasi-one-dimensional geometry, we circumvent the difficulty and inves-
tigate the amplitude mode in a system of weakly coupled spin chains with the help of quantum Monte Carlo
simulations, stochastic analytic continuation, and a chain-mean field approach combined with a mapping to the
field-theoretic sine-Gordon model. The amplitude mode is observed to emerge in the longitudinal spin suscep-
tibility in the presence of a weak symmetry-breaking staggered field. A conventional measure of the amplitude
mode in higher dimensions, the singlet bond mode, is found to appear at a lower than the amplitude mode
frequency. We identify these two excitations with the second (first) breather of the sine-Gordon theory, corre-
spondingly. In contrast to higher-dimensional systems, the amplitude and bond order fluctuations are found to
carry significant spectral weight in the quasi-1D limit.

Introduction—– The phenomenon of spontaneous symmetry
breaking (SSB) represents one of the key notions in modern
physics. For a continuous global symmetry, SSB is expected
to generate two types of collective excitations – Goldstone
modes, describing transverse or phase fluctuations of the order
parameter, and Higgs modes, which describe its longitudinal
or amplitude fluctuations. In contrast to the gapless Gold-
stone excitation, which is commonly observed in a variety
of condensed matter systems (e.g. magnons in magnetically
ordered materials), the observation of the amplitude (longi-
tudinal) mode is more challenging. It is complicated by its
intrinsically finite lifetime – an amplitude-mode excitation is
allowed to decay into a pair of Goldstone excitations which
leads to a strong damping of this excitation. By now several
successful experimental sightings of the amplitude mode have
been reported in the dimerized [1] and quasi-one-dimensional
(1D) quantum magnets KCuF3 [2, 3], BaCu2Si2O7 [4], Ising-
like spin chains SrCo2V2O and Yb2Pt2Pb [5, 6] as well as in
superconducting settings [7, 8].

The amplitude mode is a well-defined excitation when its
lifetime is long, which requires suppression of the decays into
Goldstone modes, the spin waves. Theoretically, such sup-
pression requires weakening of the long range magnetic or-
der, magnitude of which determines spectral weight of the
spin waves. Two ways to achieve this have been proposed,
through (a) quantum critical points (QCPs) [9–12] and (b)
dimensional crossover towards one dimension (1D) [13–16].
The first strategy was recently verified via quantum Monte
Carlo model simulations in dimerized antiferromagnet [17–
19] and superconductor-insulator transition [20].

In this letter, we explore the second, quasi-1D approach.
It has long been proposed that a stable longitudinal model
shall arise in weakly coupled spin chains [14–16]. It should
be noted that this 1D critical point is strongly different from
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FIG. 1. Coupled antiferromagnetic Heisenberg spin chains with
nearest-neighbor spin exchange J (black solid line) and J⊥ (red
dashed line).

the O(3) QCP one due to the extreme spatial anisotropy of
spin correlations. At the critical point, which corresponds to
the limit of decoupled spin chains, excitations propagate only
along chains. This feature, combined with unique properties
of the spin-1/2 Heisenberg chain, imbues the ordered phase of
weakly coupled spin-1/2 chains with the spinon confinement
physics which is absent in the spatially isotropic magnetically
ordered phase with spontaneously broken O(3) symmetry.

To study the excitation spectrum of the quasi-1D spin sys-
tem, we utilize quantum Monte Carlo (QMC) simulations and
stochastic analytic continuation (SAC) [21–23] to compute
the spectral information of weakly-coupled Heisenberg spin-
1/2 chains. The predicted amplitude modes is directly ob-
served in numerics as the interchain interaction is reduced
towards zero, and the dispersions of all low-energy modes
agree nicely with analytic predictions. More importantly, we
find that the amplitude mode in quasi-1D systems exhibits
two novel features. First, in contrast with higher-dimensional
magnets, the amplitude mode in quasi-1D systems is char-
acterized by a spectral weight significantly stronger than the
continuum, making it highly visible and easy to detect. Sec-
ondly, we find that a quasi-1D spin-1/2 magnet contains three,
instead of two, low-energy modes. In addition to the phase
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and amplitude modes, visible in the dynamic spin correlation
functions, an additional scalar mode emerges in the dynamic
bond correlation function. Similar to the amplitude mode, this
scalar mode is singlet-like but exhibits different frequency and
momentum dependence.

In higher dimensions, it has been known that the scalar sus-
ceptibility serves as a great tool for probing fluctuations in
the singlet channel [10] and has been widely used in numeri-
cal studies of dimerized antiferromagnets [17–19]. Inside the
ordered SSB phase scalar fluctuations overlap with the ampli-
tude ones but with much suppressed damping, and the scalar
susceptibility exhibits a sharp peak at the amplitude mode fre-
quency [11]. Quasi-1D limit is different. We show that in con-
trast to the amplitude mode which corresponds to the “second
breather” in the effective sine-Gordon description of the or-
dered quasi-1D magnet, the scalar mode is represented by the
“first breather”, an excitation with smaller frequency which is
probed via the dynamic bond-bond correlation function.
The model and the QMC method—– The geometry of the
problem is shown in Fig. 1. The Hamiltonian reads

H = J
∑
〈i, j〉x

Si · S j + J⊥
∑
〈i, j〉y

Si · S j − h
∑

i

(−1)iS z
i , (1)

where Si = (S x
i , S

y
i , S

z
i ) denotes the spin-1/2 operator on site i

and J (J⊥) is the nearest-neighbor Heisenberg exchange along
the x (y) direction. We set J = 1 and introduce ratio g = J⊥/J
to control the crossover from decoupled 1D chains, g = 0, to
the isotropic 2D square lattice, g = 1. The last term represents
the staggered pinning field h, which explicitly breaks the spin-
rotational symmetry.

In our QMC simulations the following three correlation
functions are measured: the transverse spin correlation func-
tion GS x (q, τ) = 1

L2

∑
i, j e−iq·(ri−r j)〈S x

i (τ)S x
j (0)〉, similarly de-

fined longitudinal S z correlation function GS z (q, τ), and and
the bond correlation GB(q, τ) = 1

L2

∑
i, j e−iq·(ri−r j)〈B j(τ)Bi(0)〉.

Here Bi = Si · Si+x̂ is a spin singlet bond operator (dimeriza-
tion order parameter) defined on a nearest-neighbor bond of
the spin chain, L is the linear system size and τ ∈ [0, β] is the
imaginary time. In the ordered SSB ground state with finite
〈S z〉 , 0 phase fluctuations (spin waves) are probed by GS x ,
GS z measures the amplitude fluctuations, and the scalar corre-
lation function GB probes correlations between bonds (energy
density) [17–19].

It is important to notice that SSB ground state is not possi-
ble in the QMC simulation on a finite L × L system and at fi-
nite inverse temperature β. Therefore, in the QMC with h = 0,
there is no distinction between the phase and amplitude cor-
relation functions, GS x (q, τ) = GS z (q, τ). Finite h , 0 breaks
spin-rotational symmetry and allows one to probe the ampli-
tude mode by measuring GS z . It also induces the h-dependent
gap in the phase mode in GS x [24–26].

In order to access real-time quantum dynam-
ics and obtain the real-frequency spectral function
A(q, ω) from the imaginary-time correlation G(q, τ),
G(q, τ) = 1

π

∫ ∞
0 dω A(q, ω) (e−τω + e−(β−τ)ω), we employ the

stochastic analytic continuation (SAC). This technique, de-
tails of which are described in [27–30] and the Supplemental
Material (SM) [31], has been successfully applied to a broad
range of quantum magnets [32–41].
Analytical Theory—– At small g = J⊥/J � 1, a variety of ex-
act (Bethe ansatz) and nonperturbative approaches (bosoniza-
tion and renormalization group) are available. In the g = 0
limit elementary excitations of the spin chain are right- and
left-moving spinons, neutral spin-1/2 fermions ψR/L,s, which
encode an extended SU(2)R× SU(2)L symmetry of chiral ro-
tations at low energies. Staggered part of the lattice spin oper-
ator is expressed via spinons as S a

i ∼ (−1)iψ†Rsσ
a
ss′ψLs′ + h.c.,

where σa is the Pauli matrix. The singlet bond operator is
staggered as well Bi ∼ (−1)iψ†RsψLs + h.c.. These expressions
define physical response functions GS a and GB of the chain.
When continued to the real frequency, the response is given
by the triplet and singlet spinon continua, correspondingly.

Interchain interaction, g , 0, causes confinement of
spinons, binding them in triplet and singlet pairs. This is eas-
iest seen with the help of the chain mean-field theory [15,
16, 42, 43] which maps the problem to the 1D sine-Gordon
model by approximating J⊥ term in Eq. (1) by the interchain
staggered field 2J⊥m0

∑
i(−1)iS z

i with the self-consistently de-
termined staggered magnetic order m0 = (−1)i〈S z

i 〉 along the
z-axis [31]. This mean-field breaks spin rotational symme-
try of the problem (with h = 0). The excitation spectrum of
the sine-Gordon model consists of solitons and antisolitons of
mass ∆0, which describe transverse spin excitations, and their
bound states, breathers. The amplitude mode, which within
the low-energy mapping to the sine-Gordon model is repre-
sented by S z ∼ cos(Φ/2), is described by the second breather,
of mass

√
3∆0. The singlet mode, which is represented as

B ∼ sin(Φ/2), is instead described by the first breather, of
mass ∆0, see [31] and [16, 43]. This brief description shows
that in the system of weakly coupled spin-1/2 chains the am-
plitude, S z, and the scalar, B, modes are distinct and indepen-
dent excitations.

Detailed calculation of spin and bond susceptibilities are
presented in SM [31]. The dispersions of the phase (S x and
S y), amplitude (S z) and bond (B) modes near kx = π are

ωS x = ωS y = ∆0

√
1 + bh + cos ky +

v2(kx − π)2

∆2
0

(2)

ωS z = ∆0

√
3(1 + bh) +

Z2

Z1
cos ky +

v2(kx − π)2

∆2
0

(3)

ωB = ∆0

√
1 + bh +

v2(kx − π)2

∆2
0

(4)

Here kx (ky) is the momentum along the chain (transverse to
the chain) and bh is a dimensionless parameter describing the
the effect of the external staggered field h, Eq. (S25). At h = 0,
bh vanishes and our equations for ωS x and ωS z recover the
corresponding formulae in Ref. [43]. The velocity v is πJ/2
and the ratio Z2/Z1 ≈ 0.491309.
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FIG. 2. Spectral functions obtained from QMC-SAC. (a), (e), (i) and (b), (f), (j) show the spectra function of spin and bond operators
respectively, AS x (q, ω) and AB(q, ω), without the field, h = 0, at different values of g = J/J⊥, with the system size is L = 36 and inverse
temperature β = 4L. The dashed cyan curves in (e), (i) and (f), (j) are analytical dispersions in Eqs. (2) and (4) with bh = 0. (c), (g), (k) and
(d), (h), (l) show the phase mode spectra AS x (q, ω) and amplitude mode spectra AS z (q, ω) measured in the presence of a weak staggered field
h = 1/25, with system size L = 36 and inverse temperature β = 4L. The dashed cyan curves in (g), (k) and (h), (l) are analytical dispersions in
Eqs. (2) and (3) with finite bh.

Note that in addition to having a different mass, the disper-
sion of the bond mode is different from the amplitude one as
well. It propagates along the chain with the same velocity v as
spin fluctuations but is essentially dispersionless in the trans-
verse ky direction, see [31].

Numerical Results—– In Fig. 2, we present numerical results
of spectral functions for spin-spin and bond-bond correla-
tions, with and without the pinning field h and compare them
with the dispersions (cyan lines) obtained from analytic theory
Eq.(2)-(4). From the top to bottom row, the values of g are 0.5,
0.1 and 0.05, reflecting the dimensional crossover from 2D to
quasi-1D. The system has periodic boundary condition L × L
with L = 36. The QMC calculations are carried out at inverse
temperature β = 4L. The spectra are plotted along the high-
symmetry path indicated in the BZ in panel Fig. 2(c). The
first (last) two columns of Fig. 2 are measured in the absence
(presence) of the staggered field h.

Key differences between the 2D (g = 0.5, Fig. 2 (a-d)) and
quasi-1D regimes (g = 0.1 for Fig. 2 (e-h) and g = 0.05 for
Fig. 2 (j-l)) are easily seen. For g = 0.5 the phase mode is
clearly visible in panels (a) and (c) while the amplitude and
scalar fluctuations (d) and (b) exhibit only an over-damped
multi-magnon continuum without any sharp modes, as ex-
pected [13, 14]. As the system moves towards 1D (g = 0.1 and
0.05), the single magnon mode remains sharp and becomes
more 1D-like (i.e. less dispersive along the interchain M − X1
direction). At the same time, the spectral weight in the bond
(Fig. 2 (f) and (j)) and amplitude (Fig. 2 (h) and (i)) sectors
shifts down in energy, resulting in the emergence of the two
low energy peaks in corresponding spectral densities.

Let us investigate these differences closer. The first column
in Fig. 2 shows AS x at h = 0. Note that simulations in fi-
nite size and temperature system are necessarily done in the

symmetric phase with three components of spin susceptibility
degenerate AS x = AS y = AS z . The minimal spin excitation
energy, measured at the M point (π, π), is small but finite. At
g = 0.05 it is about 0.004. The dispersion of the lowest energy
branch is well described by the pole of the RPA susceptibility
Eq. (S35). Notice that in this magnetically disordered phase
the gap is ∆2 − 2Z1J⊥ > 0, as discussed above. It vanishes
only in the thermodynamic limit L = ∞ when the SSB takes
place and the spin rotational symmetry gets broken, resulting
in different dispersion relations for transverse, Eq. (2), and
longitudinal, Eq. (3), modes (with bh = 0).

We also observe noticeable spectral intensity at higher en-
ergy, ω ≈ 0.6 − 0.7, in Fig. 2 (e) and (i). We assign this to the
second breather of the sine-Gordon+RPA theory, Eq. (S36),
with the mass

√
3∆ [31]. Naturally, this feature is absent in

the 2D limit, Fig. 2(a), where our quasi-1D arguments do not
apply. This interpretation is further supported by the data for
bond spectral function AB, presented in the 2nd column of
Fig. 2. Here, one observes pronounced difference between
the 2D, g = 0.5, and 1D limits, g = 0.05 and 0.1: the broad
and over-damped multi-particle continuum evolves into a very
structured one with a sharp particle-like peak at the lowest en-
ergy for small-g cases, in Fig. 2 (f) and (j). This is the first
breather of the sine-Gordon model, describing scalar bond
(staggered dimerization) mode, with mass ∆, of weakly cou-
pled spin chains, as described below Eq. (4). As explained in
SM [31], its dispersion along ky is negligible while that along
kx matches Eq. (4) (with bh = 0) very well.

Taken together, our data lend strong support to the descrip-
tion of the spin system in terms of confined spinon pairs. The
spin susceptibility is described by the triplet of bound spinons
and its internal excited state (the second breather) while the
scalar susceptibility is represented by bound singlet pairs of
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spinons.
To differentiate between the transverse and longitudinal

fluctuations we next turn on the staggered field h , 0 along
the z axis. The corresponding QMC data are represented by
the last two columns of Fig. 2. Now AS x = AS y measures the
phase fluctuations of the order parameter (the third column),
which are gapped stronger by the finite h, while AS z gives the
amplitude fluctuations (the last column).
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FIG. 3. Frequency dependence of the spectral functions at k =

(π, π/2) for (a) the bond-bond correlation at h = 0 and (b) the ampli-
tude mode at h = 1/25.

FIG. 4. Finite-size analysis for (a) g = 0.1 and (b) g = 0.05 at the
momentum point k = (π, π/2). The vertical ω∞-axis shows extrap-
olation of the numerical data to the L = ∞ limit. Values on the left
vertical ωth-axis mark analytical predictions for the peak frequencies
of different modes. See main text for details.

To illustrate the emergence of the amplitude and scalar
modes we plot in Fig. 3 the frequency dependence of these two
spectra at different value of g at the wavevector k = (π, π/2).
In 2D (g = 0.5), both spectra exhibit a continuum background
from multi-magnon excitations. As g gets smaller, a peak

emerges in the spectral function and becomes sharper as g be-
comes smaller. It is seen that for the same value of g the peak
in AB is more narrow and occurs at a lower frequency than
that in AS z . The larger linewidth of the amplitude mode is due
to the stronger damping it experiences due to decays into the
low energy phase fluctuations, in comparison with the bond
correlation function [10], while the peak’s maxima difference
is a unique property of quasi-1D system as equations (3) and
(4) show.

In Fig. 4, we present the finite-size analysis and extrapolate
the peak frequency of each mode to the thermodynamic limit.
Here, we focus on the momentum point k = (π, π/2), at which
the interchain dispersion vanishes within the RPA approxima-
tion, and the frequency of a mode is obtained by fitting the
correlation function to an exponential function of the imag-
inary time ∝ e−ωτ (several representative cases of such fit-
ting are presented in SM [31]). Given the square-root form of
dispersions (2), (3) and (4), we take the following functional

form for the extrapolation to infinite sizeωL =

√
ω2
∞ + L2

0/L
2,

where ω∞ and L0 are fitting parameters. The results for so ob-
tained ω∞ are presented to the right of ω∞-axis in Fig. 4. As
discussed above, without the staggered field the lowest energy
peak in AS x (h = 0) describes coherent 3-fold degenerate mode
ωS x . At finite h = 1/25, the degeneracy is removed and ωS x

and ωS z scale to different limits. Within the sine-Gordon de-
scription ωS z/ωS x =

√
3, see Eqs. (2) and (3). Figure 4 shows

that this ratio extrapolates to 1.8 for g = 0.1 and to 2.0 for
g = 0.05 at L = ∞. The ωth axis in Fig. 4 shows analytical
predictions for ωS x , ωS z , which are calculated as functions of
g and h, without any adjustable parameters, in SM [31]. This
parameter-free comparison is seen to work reasonably well.
In addition, in agreement with analytical predictions, Fig. 4
shows that for h = 0, ωS x and ωB extrapolate to the same
limit, just as equations (2) and (4) with bh = 0 require.
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