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Abstract

The pedestal of H-mode tokamaks display strong magnetic fluctuations correlated with the evo-

lution of the electron temperature. The micro-tearing mode (MTM)a temperature-gradient-driven

instability that alters magnetic topologyis compatible with these observations. Here we extend the

conventional theory of the MTM to include the global variation of the temperature and density

profiles. The offset between the rational surface and the location of the pressure gradient maximum

(µ) emerges as a crucial parameter for MTM stability. The extended theory matches observations

on the JET tokamak.

INTRODUCTION1

The high confinement (H-mode) operating regime of tokamaks offers a promising avenue2

for an effective fusion reactor. The essential characteristic of H-mode is the presence of3

a narrow region at the edge of the plasma where heat and particle transport is greatly4

diminished. This region is known as the pedestal. Due to its insulating properties, the5

pedestal is characterized by steep gradients in temperature and density.6

A steep and stable pedestal is highly desirable. The pedestal’s large gradients levitate7

the core plasma temperature and density profiles, improving the temperature and density8

for fusion reactions. Understanding the mechanisms that abate or even disrupt the pedestal9

is a prominent goal in the fusion community. The pedestal is also highly dynamic. Its10

evolution is quasi-periodic with a period of gradient steepening followed by a sudden crash11

of the gradients. These crashes are experimentally termed edge localized modes (ELMs).12

During the gradient steepening cycle, the pedestal hosts a spectrum of saturated fluctua-13

tions. Figure 1 displays a typical magnetic spectrogram throughout the ELM cycle from the14

JET-C tokamak. During the inter-ELM period, the spectrogram displays discrete frequency15

bands of definite toroidal mode number (n). The frequency bands are a common feature of16

H-mode pedestals [1–6].17

These bands have frequencies close to the diamagnetic frequency (ω∗n = k⊥ρivi ln(n)
′/2)18

and collision frequency (ν =
√
2πne4 ln(Λ)/m1/2

e T 3/2): ω ∼ ω∗n ∼ ν. Here T is the plasma19

temperature, n the density, vi =
√

2T/mi, ρi = vi/Ωi the ion gyro-radius, k⊥ = m/r, m the20

poloidal mode number, and ln(Λ) the Coulomb logarithm. r is the minor radial coordinate21

and the prime represents a radial derivative. The fluctuations occur in the presence of large22
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temperature gradients, correlate with electron heat transport, and have long wavelengths23

k⊥ρi < 1 [6]. All of these characteristics match the fingerprint of an instability known as24

the micro-tearing mode. [7]25

The micro-tearing mode[8] (MTM) is an electromagnetic instability that is localized about26

rational magnetic surfaces and is capable of altering the flux-surface topology. Its growth27

rate scales with ω∗T = k⊥ρivi ln(T )
′/2. The real frequency is in the electron direction and28

is not far from the local diamagnetic frequency: ω ≈ ω∗n + ω∗T . It is distinctive from29

conventional tearing modes[9] by being driven by temperature gradients, with little regard30

for the conventional stability parameter ∆′[9], and in its dependence on the velocity variation31

of the Coulomb cross-section.[8]32

The pedestal has many low-order rational surfaces discretely spaced on which micro-33

tearing modes could be active. Local gyrokinetic simulations and conventional MTM dis-34

persion relations commonly predict all low-order rational surfaces as unstable[7, 10]. In35

contrast, global gyro-kinetic simulations show that only a subset of rational surfaces have36

active MTMs. [7, 10, 11] Micro-instabilities are known to be affected by global treatment37

[12–14]. Motivated by this circumstance, and a need for physical understanding, we extend38

the conventional MTM theory to include global effects.39

The key global feature is the strong variation of the drift frequencies ω∗n and ω∗T , hence-40

forth together referred to as ω∗, in the pedestal. The ω∗ variation is non-monotonic. It is41

maximal near the mid pedestal, and away from the peak it decays. Despite the many theoret-42

ical studies of micro-tearing[8, 15–20] and more recent gyrokinetic simulations [12, 21–24],43

a basic analytical investigation of the impact of global ω∗ variation on the MTM is not44

available.45

The aforementioned gyrokinetic studies [10, 11] analyzed the unstable rational surfaces46

and found that they all lie near the peak in ω∗. This observation has demonstrated consid-47

erable power in explaining the distinctive fluctuation bands[6]. The rational surfaces that48

are radially offset from the peak are stable and lead to gaps in frequency and mode number.49

We term this observation ‘offset stabilization’. In this Letter, we present an analytical and50

numerical study of the electromagnetic equations to explain offset stabilization. The results51

match with both gyrokinetic simulations and experimental data. This provides additional52

evidence that MTMs are the major source of magnetic fluctuations and transport in between53

ELMs.54
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FIG. 1. Magnetic spectrogram showing fluctuations throughout several ELM cycles from JET-C

pulse #78697. The vertical broadband lines are ELMs. The inter-ELM bands of fluctuations with

toroidal mode numbers n = −4 and n = −8 are clearly visible. The negative sign indicates the

mode is propagating in the electron diamagnetic direction. The low frequency bands with positive

n numbers are core modes and not relevant to our study. Figure courtesy of Ref. [10].

There are two physical reasons for offset stabilization: (i) At the peak in ω∗T the driving55

energy is maximized. (ii) The ω∗ profile and magnetic shear profile modulate the spatial56

structure of the mode. If the rational surface and the peak in ω∗ align, these influences57

cooperate to trap the mode and enhance its growth rate. If the rational surface and the ω∗58

peak do not align, these influences compete and diminish the mode.59

SET UP60

Unconstrained motion along field lines allows magnetic surfaces to arrive at local thermal61

equilibrium on a fast time scale R/ve. Here ve =
√

2T/me and R is the major radius.62

Slower transport across surfaces set ups radial gradients. Here by radial we mean the63

direction across magnetic surfaces. The micro-tearing mode is an instability about this64
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quasi-stationary state.65

We neglect the curvature of the toroidal geometry. This effectively brings our model into66

a Cartesian slab. We define x to be the radial direction and the origin x = 0 to coincide67

with a rational surface of interest. The perpendicular directions y and z lie in the planes of68

the magnetic surfaces. The z direction coincides with the direction of the magnetic field on69

the rational surface.70

The magnetic field direction changes radially. We define 1/Ls = (r/qR)(ln q)′, 1/Ln =71

(lnn)′, and 1/LT = (lnT )′ to characterize the magnetic shear and the quasi-stationary72

gradients; q is the safety factor. The dimensionless quantities ŝ = Ln/Ls, β = 8πneT/B
2,73

and η = Ln/LT will also be utilized.74

The micro-tearing mode arises from the solution to suitably ordered versions of Ampere’s75

law and quasi-neutrality (ρi/a << 1, ω ∼ ω∗n ∼ ν, β << 1, k⊥ρi << 1). a is the minor76

radius of the tokamak. These equations describe an electromagnetic perturbation with wave77

vector k = k⊥ŷ and frequency ω. They have been repeatably discussed in the past literature.78

[8, 17, 18]79

d2A‖

dx2
= −4π

c
σ‖(ω, x)E‖ (1)

80
(

c

vA

)2

ω(ω − ω∗n)
d2Φ

dx2
= −4πk‖σ‖(ω, x)E‖ (2)

Here E‖ = iωA‖/c − ik‖φ and k‖ = b̂ · k. Due to magnetic shear, k‖ varies in the radial81

direction. It can be shown that k‖ = k⊥x/Ls. The perturbed densities of quasi-neutrality (2)82

and the conductivity σ‖ have been computed using kinetic theory. With boundary conditions83

on A‖ and Φ, this becomes a generalized eigenvalue problem. The micro-tearing mode is a84

single branch of solutions. It has the largest growth rate in the parameter regime of interest.85

For our analysis, we normalize all length scales to ρs =
√
2ρi and frequencies to a repre-86

sentative value of ω∗n. The equations become.87

ǫ
d2ψ

dx2
= σ(ψ − xφ) (3)

88

ǫ
d2φ

dx2
=

2x

ω(ω − ω∗n)
δσ(ψ − xφ) (4)

Where ψ = ωA‖ and φ = ŝc/viΦ. We can identify ǫ = me/(miβ) and δ = ŝ2/β as small89

parameters. Here ǫ is a conventional small parameter in fusion plasmas and δ is the inverse90

of a large parameter, β̂, known to be important to the MTM[25].91
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The normalized conductivity σ is computed from the electron drift-kinetic equation[26].92

It has the form.93

σ(ω, x) = i
(

(ω − ω∗n(x)− ω∗T (x))L11 − ω∗T (x)L12

)

(5)

Here the “transport coefficients”, L11 and L12 are functions of k‖ve, ν, and ω. The k‖94

dependence arises from the fact that particles respond differently to perturbations along95

the magnetic field and perpendicular to it. These functions contain the entire spectrum of96

electron response from adiabatic (k‖ve >> ω, ν) to resonant (ω ∼ k‖ve) to hydrodynamic97

(ω, ν >> k‖ve)[26]. Since k‖ is spatially varying, all three of these regimes can be sampled98

by the MTM. These transport coefficients vary with a characteristic length scale xσ =99

ωLs/k⊥ve; they are localized about the rational surface, decaying to zero at large k‖. Clearly,100

magnetic shear controls the size of xσ.101

Clearly, the spatial variation of ω∗ will effect σ. We denote the length scale of ω∗ variation102

by x∗. This length scale is intimately tied to the width of the pedestal, and of the same103

order. The effect of the ω∗ profile on the mode will increase as the ratio r = xσ/x∗ increases.104

A survey of H-mode pedestals, discussed in the following section, has determined that this105

ratio ranges from 0.02 to 0.6 in the pedestal. Even for small values of this ratio, including the106

global spatial dependence is important in determining the stability. The spatial dependence107

of ω∗ typically breaks the even/odd symmetry of the micro-tearing mode equations.108

REDUCTION109

Above we claimed that the ω∗ profile and shear profile act together to determine the110

spatial structure of the mode. Here we exploit the small parameters ǫ and δ to support this111

claim. Our ordering restricts ourselves to modes which have length scales w >∼ ρs, where w112

is the radial mode width. To balance the smallness of ǫ, it follows that.113

σ(ω) <∼ ǫ (6)

Formally, to zeroth order in ǫ the dispersion relation becomes σ(ω) = 0, a well known result,114

and the original MTM dispersion relation [7, 8].115

We proceed to higher order. Using x ∼ xσ and σ ∼ ǫ as upper limits, we see that the116

right hand side of (4) is O(δ1/2ǫ3/2). To first order φ = 0, and we are left with the equation.117

d2ψ

dx2
− 1

ǫ
σ(x, ω)ψ = 0 (7)
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This equation is conveniently in the form of a Schrödinger equation, in which σ/ǫ acts as a118

potential.119

By plotting the structure of σ we find that alignment of the ω∗ peak and the rational120

surface lead to cooperation and a deeper, stronger well. An offset weakens the well and121

dampens the mode.122

NUMERICAL SOLUTION123

We now proceed to the full numerical solution of (1) and (2). Our numerical solution is a124

3-point stencil finite difference scheme. The discrete system is set up as a homogeneous linear125

problem with an unknown eigenvalue in the matrix. The eigenvalue ω appears in a nonlinear126

way in the equations (through σ). A secant method is applied to compute the eigenvalue.127

[27] We compute tearing parity eigenfunctions and enforce that the eigenfunctions are zero at128

a sufficient distance from the rational surface. When there is even/odd symmetry breaking,129

we identify MTMs by continuity with the symmetric case.130

The conductivity model is taken from recent work [26]. It is in the form of a matrix-131

valued continued fraction, derived from projecting the drift-kinetic equation–including the132

full collision operator–into Sonine polynomials. Truncation at five Legendre polynomials133

and seven Laguerre polynomials gives good convergence. Our code has been bench-marked134

with previous work [16] by using the Lorentz Gas conductivity.135

To study these equations a parameter survey was performed. It included ten H-mode136

pedestals from DIIID and JET-C. The parameters were computed using an equilibrium137

reconstruction of the temperature, density, and q profile with the code E-FIT. [28, 29] The138

reconstruction is time-averaged over the ELM cycle. The survey provided these parameter139

ranges: ŝ : (0.005, 0.05), η : (1.0, 3.5), β : (0.0005, 0.002), ν/ω∗ : (0, 10), x∗/ρs : (7.0, 20.0)140

ω∗ VARIATION141

The spatial variation of ω∗ in the pedestal is modeled by142

ω∗n(x) + ω∗T (x) = ωpeak exp (
−(x− µ)2

x2∗
) (8)

Since x = 0 is the position of the rational surface, µ represents a displacement of the peak143

in ω∗ from that surface. For simplicity, we assume ω∗n and ω∗T have the same spatial144
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FIG. 2. Growth rate and real frequency of the mode as µ is increased. The blue line indicates

the growth rate computed using the full spatial dependence of ω∗. The orange line (dotted) shows

the growth rate if ω∗ is evaluated at the rational surface and treated as uniform (i.e., the local

approximation). (a) & (b) show the eigenvalue corresponding to r = 0.28 and ŝ = 0.006, (c)

& (d) correspond to r = 0.14 and ŝ = 0.012. Other parameters are set to: x∗/ρs = 10.0, β =

0.002, ν/ωpeak = 1.0, η = 2.0.

dependence, a circumstance that is appropriate in the pedestal.145

We solve (3) and (4) numerically and vary µ and r. To elucidate the necessity of ω∗146

variation, we compute the growth rate with the full dependence given in (8) and contrast it147

to uniform ω∗. The uniform ω∗ value is determined by evaluating (8) at the local position148

of the rational surface.149

Figure 2 contrasts the scans for different r values and the different ω∗ treatments. It is150

clear that the local uniform approximation does not match the more accurate full spatial151

variation. We observe offset stabilization: the MTM is only unstable when the rational152

surface is near the peak in ω∗.153
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FIG. 3. The eigenmode and the conductivity evaluated at ω (a) & (c) correspond to the rational

surface and ω∗ peak aligning and (b) & (d) correspond to an offset of µ = 3.0. The eigenvalues were

determined to be ω/ωpeak = 1.084 + 0.045i and ω/ωpeak = 1.009 + 0.009i respectively. Parameters

were set to: x∗/ρs = 10.0, β = 0.002, ŝ = 0.012, ν/ωpeak = 1.0, η = 2.0, Zeff = 1.0,mi/me = 1836.

Here V (x) = iσ.

Figure 3 displays the eigenfunctions and the conductivity when the peak in ω∗ aligns and154

when it does not. The plots show how ω∗ profile influences σ and how the conductivity155

influences the eigenmode.156

COMPARISON WITH JET OBSERVATIONS157

We conclude by comparing our model to a recently published gyro-kinetic study and158

experimental spectrogram of JET-C shot #78697 (shown in Figure 1)[10]. The gyroki-159

netic simulations were performed using the code GENE[30, 31] including the entire toroidal160

magnetic geometry. Realistic radial profiles of electron temperature, q, inter alia, were com-161

puted from experimental diagnostics. The study performed both global linear simulations–162

considering poloidal mode coupling and profile variation–and local linear simulations. To163

establish matching of the simulations with the experimental spectrogram, the nominal equi-164
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FIG. 4. Here we display the comparison of the slab model to global linear GENE. (a) Displays the

Gaussian fit of the ω∗ profile and the location of the rational surfaces determined from the q profile.

(b) Displays the growth rates of each toroidal mode number. (c) Displays the real frequencies of

the unstable modes. The stable markers indicate a negative growth rate for both the slab model

and GENE (excluding n = 7 and n = 9). n = 7 (grey) is predicted to be unstable by GENE,

however due to the large jump in real frequency, inter-alia, it is not a MTM. n = 9 is predicted to

be unstable by GENE, but the growth rate is marginal.

librium profiles were modified within the error bars. The temperature gradient was increased165

by 20% and the q profile was reduced by 5%. The local linear simulations computed unsta-166

ble MTMs at all low-order rational surfaces while the global simulations selected only the167

rational surface near the peak in ω∗ as unstable.168

To perform a comparison of these results to our model, we fit the ω∗ profile to a Gaussian169

and located the positions of rational surfaces with the q profile. Local values of ŝ, β, ν and170

η were extracted for each rational surface; the full variation of these parameters was shown171

to insignificantly effect the growth rates. Growth rates were computed for each rational172

surface using both uniform and non-uniform ω∗. Under the uniform approximation, all of173

the toroidal mode numbers (up to 12) were found to be unstable.174

Global linear GENE [10] and our global reduced model both indicate that only the rational175

surface q = 2.75 associated with n = 4, 8, 12 is unstable. Figure 4 provides a full comparison.176

The n = 4 and n = 8 modes are observed in the magnetic spectrogram. The real frequencies177

from linear simulations slightly overestimate the frequency of the fluctuations. Nonlinear178

simulations performed in [10] provides corrections to capture the proper frequency. The n =179

12 mode does not appear in the magnetic spectrogram (likely due to the more rapid decay180

of magnetic fluctuations at smaller scales[10]). Beyond these considerations, the observation181
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that solely n = 4 and n = 8 fluctuations appear provides evidence that these discrete182

fluctuation bands arise from micro-tearing modes.183

Because of the large experimental uncertainty in the q profile (up to 20% relative184

error[32]), the locations of the rational surfaces are not known to great precision (ap-185

proximately 10ρs). Consequently, the framework described here should not be interpreted186

as having the capability of predicting frequency bands but rather the ability to reproduce187

them within experimental uncertainties.188

CONCLUSION189

In this Letter, we have extended the conventional theory of micro-tearing modes by190

including the global variation of the ω∗ profiles. We have demonstrated that the ω∗ profile191

and the magnetic q profile form the potential well of the mode. The q profile enters by virtue192

of the spatial dependence of the non-adiabatic electron response L1i(k‖(x)).193

This extension has proven to be fruitful. Our model identifies a crucial and until now194

unknown parameter for the stability of the MTM. It was shown that displacement (µ) of195

the rational surface from the peak in ω∗ quickly stabilizes the mode. We reason this is due196

to the breakdown of the potential well. This leads to a simple yet powerful condition for197

MTM instability in the pedestal: the rational surface must lie near the peak in ω∗ for it to198

be unstable.199

Armed with this extended model, we produced additional evidence that micro-tearing200

modes are a major source of magnetic fluctuations during the inter-ELM cycle. We examined201

and compared our model to a spectrogram from JET. Our model predicts the same frequency202

bands and mode numbers as unstable. The unstable mode numbers correspond to rational203

surfaces which nearly align with the ω∗ peak. The uniform ω∗ approximation, in contrast,204

predicts all mode numbers as unstable and a broadband spectrum of magnetic fluctuations.205

The vast differences in the global and local predictions nullifies local treatments for studying206

MTM stability in the pedestal.207

These results provide a simple and expedient framework for determining if micro-tearing208

modes are the source of magnetic fluctuations in the pedestal. Future work will focus on209

applying this framework to larger data sets to solidify this hypothesis. A solid understanding210

of these fluctuations is a necessary ingredient for modelling the structure and evolution of211
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the pedestal.212
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