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We investigate the potential for two-dimensional atom arrays to modify the radiation and inter-
action of individual quantum emitters. Specifically, we demonstrate that control over the emission
linewidths, resonant frequency shifts, and local driving field enhancement in impurity atoms is possi-
ble due to strong dipole-dipole interactions within ordered, subwavelength atom array configurations.
We demonstrate that these effects can be used to dramatically enhance coherent dipole-dipole in-
teractions between distant impurity atoms within an atom array. Possible experimental realizations
and potential applications are discussed.

High-fidelity, deterministic interactions between indi-
vidual quantum emitters and photons, as well as photon-
mediated interactions between emitters, are central to
quantum science and engineering [1–6]. In free space,
these interactions are limited by the emitter’s scattering
cross section, which is typically bounded by a small ge-
ometrical limit [7]. To circumvent these limits, optical
cavities and waveguides can be utilized to enhance inter-
action probabilities between atomic emitters [8–12]. Re-
cent research has shown that photonic crystals can also
engineer such atom-photon interactions [13–16]. While
substantial experimental progress towards these goals has
been made [17–22], widespread applications remain lim-
ited by multiple obstacles. For instance, many of these
techniques require exquisite control of emitter arrays near
or at nano-structured surfaces, which is experimentally
challenging.

Coherent control of quantum emitters with 2D arrays
furnishes inherent advantages over solid state architec-
tures or classical dipole arrays, such as dynamic recon-
figurability [24], substantially larger coherent coupling
strengths [25], and environments devoid of surface imper-
fections [26]. Additionally, these systems feature intrinsic
quantum nonlinearities and fermion-like behavior of in-
teracting photons [27, 28]. While 1D atomic chains have
been studied for coupling impurity atoms of broad and
delocalized linewidth [29], and similar investigations have
focused on other quantum emitters, such as supercon-
ducting qubits [30–32], only recently has it been shown
that 2D optical atomic lattices, in contrast to their 1D
counterparts, can interact strongly with individual pho-
tons [33–35]. In particular, the rich, two-dimensional
mode structure of 2D arrays can provide a highly coher-
ent interface capable of directional photon transfer [38]
and a variety of other quantum information applications
unfeasible in 1D geometries [27, 33, 36, 37, 39, 40].

In this Letter, we demonstrate that 2D atom ar-
rays can be used to engineer emitter-photon interactions
and to enable high-fidelity, long-range interactions be-
tween emitters. We consider impurity atom emitters
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FIG. 1. (a) 2D array of atoms (blue) of interatomic spacing
a . λ, for lattice atom transition wavelength λ, with im-
purity atoms (red) embedded xy-plane at plaquette centers
and separated by distance d. While a free-space impurity has
cross-section-limited light coupling (pink shading), its dipole-
dipole interactions with the array extend over many lattice
sites (dashed green circle). (b) Lattice normal mode frequency
J(k) vs momentum k of 2D atomic square lattice with spac-
ing a = 0.2λ. The dispersion relation forms a photonic band
structure, where Γ, X, and M are the symmetry points of a
2D square lattice Brillouin zone (inset).

(Fig. 1(a)). Atom arrays facilitate such interactions in
a manner analogous to photonic materials or cavities,
tailoring the environment of the impurity by selectively
enhancing or suppressing the electromagnetic modes with
which it interacts. The role of guided modes is taken by
the arrays’ normal modes, which form delocalized exci-
tations of momentum k, frequency J(k), and decay rate
Γ(k). Each mode k couples to an impurity s in the array
with dispersive and dissipative rates J̃s(k) and Γ̃s(k), re-
spectively, effectively modifying its resonance frequency
ωI, linewidth γI, Rabi drive ΩI, and dipole-dipole inter-
actions with other impurity atoms. This allows one to
confine and guide impurity emission within the 2D sur-
face, and to engineer impurity-photon bound states that
generate strong and coherent interaction between distant
impurities. We extend the analogy between atom arrays
and cavities by defining quality factors of impurity cou-
pling to far-field light Q(1) and photon transfer between
two impurities Q(2), which describe the number of co-
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FIG. 2. Effective impurity linewidth ΓEff as a function of lat-
tice spacing a and array atom detuning δLI for a 20×20 array.
Both the identical (a) and orthogonal (b) configurations are
shown (insets show relative circular polarizations of impurity
and array). The band edge energy ωBE is plotted in red. In
(a), the black curve represents optimal lattice detuning δDLI

for suppressed impurity emission due to the lattice k = 0
mode. Enhanced emission primarily occurs in (a) and (b) for
δLI < ωBE due to resonant coupling between the impurity and
lattice modes.

herent photon exchanges obtainable during the system’s
relaxation time [23].
We first summarize the formalism of an isolated ar-

ray, in the absence of impurities [27, 33]. We consider a
square 2D atom array in the xy-plane with lattice spac-
ing a . λ, where ωL = 2πc/λ is the resonance frequency
of the lattice atoms (Fig. 1(a)). Subwavelength spacing is
obtainable, e.g., using ultracold atoms in optical lattices
[34, 41, 42]. Taking ~ = 1 and lowering operators σi,
the non-Hermitian Hamiltonian for the isolated N -atom
array is

H =

N
∑

i

(

ωL − i

2
γL

)

σ†
i σi +

N
∑

i,j 6=i

(

Jij −
i

2
Γij

)

σ†
i σj .

(1)
Jij and Γij are the coherent and dissipative parts of
the free-space dipole-dipole interactions between the ith
and jth lattice atoms separated by displacement vector

rij = ri−rj , where Jij− i
2Γij = − 3πγL

ωL

ˆ
d†i ·G(rij , ωL) · d̂j ,

for real-space Green’s tensor G(r, ω) with normalized

transition dipole vector d̂i of atom i [43–46]. This for-
malism holds while the retardation of light within the
spatial scale of our system is negligible [47]. In the
limit of large lattices, Eq. (1) is diagonal in momen-
tum space, yielding eigenstates that are collective surface
modes of xy-plane quasimomentum k, lowering operator
σk = 1√

N

∑N
i e−ik·riσi, and frequency shift and decay

rate

J(k)− i

2
Γ(k) = −3πγL

ωL

ˆ
d†L ·G(k, ωL) · d̂L − i

2
γL, (2)

where G(k, ωL) =
∑N

i,j 6=i e
−ik·rijG(rij , ωL). This for-

malism represents frequencies J(k) as a band structure
of momentum modes (Fig. 1(b)), akin to those of pho-
tonic crystals. We indicate the highest energy level or
band edge ωBE as red crosses in Fig. 1(b) and red curves
in Fig. 2(a) and (b). According to the wave equation,
the momentum perpendicular to the array kz of each k

satisfies
√

k2 + k2z = ωL for c = 1. For a < λ/
√
2, there

exist guided modes |k| > ωL such that kz is imaginary
and the excitation is an evanescent mode, propagating
along the lattice without loss [27, 33]. Conversely, modes
for which |k| < ωL decay into the far-field and are said
to be within the light cone (Fig. 1(b)).
We now introduce an impurity atom into the array in-

terstitially [25]. Provided that |ωI − ωL| ≪ ωI, ωL, the
responses of both atomic species are narrow peaks around
ωL and the Green’s tensor formalism holds [43–46]. This
condition could also be fulfilled by a single atomic species
by shifting one or more of the resonant frequencies using,
e.g., an AC shift produced by optical tweezers. The cou-
pling of an impurity with lowering operator s and posi-
tion vector rs to any surface excitation σk is described by
the non-Hermitian Hamiltonian under the rotating wave
approximation

H = −i
γI
2
s†s−

∑

k

[

δLI - J(k)+i
Γ(k)

2

]

σ†
k
σk

+
∑

k

[

J̃s(k) - i
Γ̃s(k)

2

]

σ†
k
s+

∑

k

[

J̃s(k)
∗ - i

Γ̃s(k)
∗

2

]

s†σk,

(3)

where

J̃s(k)−
i

2
Γ̃s(k) = −3π

√
γIγL

ωL
d̂†L · G̃s(k, ωL) · d̂I, (4)

G̃s(k, ωL) =
∑N

i e−ik·riG(ris, ωL), and δLI = ωI − ωL.
As seen from Eq. (4), the coupling between the im-

purity and lattice atoms depends on their relative po-
larization. We assume that all atoms have either right
or left-handed circular polarization in the xy-plane and
identify the two polarization configurations key to this
work: (1) the identical configuration, where both the lat-
tice and impurity atoms have the same polarization (e.g.
both right-handed) and (2) the orthogonal configuration,
where the lattice and impurity atoms have the opposite
polarization (e.g. right and left-handed, see Fig. S2).
These polarizations could be individually addressed by
inducing Zeeman shifts with a z-axis magnetic field. The
orthogonal configuration still leads to impurity-lattice in-
teraction, as these polarizations are only orthogonal for
light emitted along the z-axis, not within the xy-plane.
To gain intuition for the distinct effects of these two

polarization configurations, we study a toy model: an im-
purity in a 2× 2 atom array, with details derived in the
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Supplementary Material (SM) [25]. The impurity only
couples to two of four array modes: v̂‖, the lowest mo-
mentum mode with the largest linewidth, and v̂⊥, the
highest momentum mode with the narrowest linewidth.
In v̂‖, all atoms oscillate in-phase, whereas in v̂⊥ they os-
cillate π out-of-phase in a checkerboard pattern. These
modes form the symmetry points of the Brillouin zone
(Fig. 1(b)), with v̂‖ at the center (Γ) and v̂⊥ at the cor-
ner (M). An impurity in the orthogonal configuration
only couples to v̂⊥ and an impurity in the identical con-
figuration only couples to v̂‖. In this latter combination,
the impurity and array oscillate π out-of-phase, forming
a state comparable to a dark state in V-type electro-
magnetically induced transparency [48]. The orthogonal
configuration impurity couples to v̂⊥, forming a bright
state. The effect of the array on the impurity converges
with relatively few atoms [25].
Provided that γI ≪ γL, the array’s dynamics occur on

a time scale much shorter than that of the impurity s,
rendering it a Markovian bath. To simultaneously ful-
fill this condition and the resonance frequency require-
ment, different isotopes of the same element could be
used, e.g., 87Sr and 88Sr [29, 49]. Alternatively, tightly
focused beams on select atoms could induce two-photon
transitions by coupling them to metastable states, selec-
tively tuning both the target atoms’ resonance frequency
and linewidth. The impurity exchanges photons, both
real and virtual, with the array, giving rise to the so-
called self-energy term ΣSE through which the impurity is
influenced by its own presence, reducing Eq. (3) to effec-
tive HamiltonianHEff = (ΣSE − iγI/2) s

†s. Formally, the
self-energy is computed from Eq. (3) by calculating the
impurity’s Schrodinger equation of motion and eliminat-
ing the array degrees of freedom by solving for the lattice
modes in steady-state (Markovian bath) [25], yielding

ΣSE =
∑

k

(

J̃s(k)− i
2 Γ̃s(k)

) (

J̃∗
s (k)− i

2 Γ̃
∗
s(k)

)

δLI − J(k) + i
2Γ(k)

. (5)

The self-energy is key to understanding impurity-lattice
interactions as it modifies the effective frequency and de-
cay rate of the impurity to ωEff = ωI + Re[ΣSE] and
ΓEff = γI − 2Im[ΣSE], respectively. These equations
are valid as long as ΣSE varies little on the interval
δLI + Re[ΣSE] ± ΓEff, such that the electromagnetic re-
sponse of the lattice atoms with respect to δLI is approx-
imately constant compared to that of the impurity atom.
Under these same conditions, ωEff −ωL ≈ δLI. For broad
ΓEff, ΣSE can vary considerably and non-Markovian anal-
ysis is valuable [15, 50].
Fig. 2(a) displays ΓEff in the identical configuration.

Below ωBE (red curve), ΓEff is enhanced as the impurity
couples to resonant lattice modes, particularly those in
the light cone. Above ωBE, however, the linewidth of
these states is suppressed by destructive interference be-
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FIG. 3. Time-dependent transfer of excitation probability
between initially excited s and initially ground state q in an
array with a = 0.1λ in (a) the orthogonal configuration at
distance d = 4a (for d dependence, see Fig. 4) and (c) the
identical configuration at d = a. (b) Two-impurity quality

factor Q(2) as a function of lattice spacing a and detuning δLI

for the orthogonal configuration excitation transfer shown in
(a), and (d) Q(2) of the identical configuration shown in (c).

In (d), the yellow streak of high (∼ 106) Q(2) represents the
minimal effective impurity linewidth ΓEff predicted by Eq. (6)

with k = 0. Likewise, in (b), Q(2) is maximized (∼ 102) for
lattice detuning δLI near the band edge.

tween impurity radiation and off-resonant coupling with
these modes. We can maximize the impurity lifetime
(creating the “dark” state explained above) due to a par-
ticular σk by minimizing the corresponding term in ΓEff

(maximizing Eq. (5)) with respect to δLI. As we place
s at a plaquette center, J̃s(k), Γ̃s(k) are real, and we
obtain the optimized lattice detuning

δDLI(k) = J(k) − J̃s(k)Γ(k)

Γ̃s(k)
. (6)

This quantity is plotted in black in Fig. 2(a) for k = 0 and
corresponds to the curve of smallest ΓEff and largest exci-
tation probability. The correspondence of k = 0 demon-
strates that light cone coupling dominates identical con-
figuration dynamics. In the SM, we show that linewidth
suppression is lattice spacing limited, as ΓEff → 0 in the
limit a/λ ≪ 1, while δDLI ∝ 1/a3 [25].
Fig. 2(b) depicts ΓEff in the orthogonal configuration.

Like in the identical configuration, ΓEff is enhanced by
impurity coupling to resonantly driven lattice modes for
δLI < ωBE. However, orthogonal configuration ΓEff has
greater enhancement that occurs near resonance with the
band edge, not the light cone.
If we add an incident driving field ΩIs + ΩL(k)σk +

c.c. to Eq. (3), the impurity will experience both direct
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Rabi drive ΩI and an array-mediated driving response.
Assuming that ΩL(k)/γL ≪ 1, we eliminate the array
degrees of freedom and find effective Rabi-frequency

ΩEff =
∑

k

(

J̃s(k) +
i
2 Γ̃s(k)

)

ΩL(k)

δLI − J(k)− i
2Γ(k)

+ ΩI. (7)

The resultant single-impurity quality factor Q(1) =
ΩEff/ΓEff can be very large, indicating many coherent os-
cillations [23]. ΩEff/ΓEff ≥ ΩI/γI for the identical polar-
ization case with a weak, perpendicularly incident drive
[25].
We now focus on lattice-mediated interactions between

two impurities, s and q, which exchange photons via
dipole-dipole interactions. This exchange has a lattice-
independent component φ, which is simply the free-space
dipole-dipole interaction between the impurities [51], and
a lattice-mediated component, which represents the mod-
ification of the inter-impurity dipole-dipole interactions
by lattice interactions. Eliminating the lattice degrees of
freedom [25], the effective dipole-dipole interaction be-

tween s and q is H
(2)
I = Φsq

Effs
†q + c.c. [25] where

Φsq
Eff =

∑

k

(

J̃s(k)+
i
2 Γ̃s(k)

)(

J̃q(k)
∗+ i

2 Γ̃q(k)
∗
)

δLI − J(k) − i
2Γ(k)

+ φ.

(8)
The quantity Φsq

Eff is a key metric because it describes
the lattice-mediated photon transfer between impurities,
analogous to Eq. (7), but with the driving field replaced
by that of the second impurity. Thus, Φsq

Eff depends on
both the distance between impurities d and the place-
ment of the impurities within their respective plaquettes.
In regimes of large dissipative Φsq

Eff, the system experi-
ences gain that can be interpreted as parity-time sym-
metry breaking [52].
When δLI is above the band edge (Markovian regime)

and the impurities are identical, the photon transfer
dynamics form an iSWAP gate between the impurities
with interaction strength described by modified excita-
tion transfer rate Φsq

Eff and decay rate ΓEff. As iSWAP
gates have the necessary nonlinearity to be universal for
quantum computation [53, 54], they serve as a basis
for quantum computing architectures. This interaction
results in coherent oscillations with large two-impurity
quality factors (number of coherent excitation transfers
[23]) Q(2) = Re[Φsq

Eff]/ΓEff (Fig. 3). We now character-
ize Q(2) for both polarization configurations, highlighting
the distinct advantages of each case.
Fig. 3(a) shows time-dependent transfer of excitation

probability (Q(2) ∼ 102) between impurities s and q in
the orthogonal configuration with d = 0.4λ and a = 0.1λ.
The high frequency, small amplitude modulations are in-
duced by lattice mode interactions, especially those near
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FIG. 4. (a) Number of coherent excitation transfers Q(2) be-
tween impurities s and q as a function of two-impurity sepa-
ration d with various a in the orthogonal configuration. The
value of Q(2) decreases exponentially with d due to the photon
bound states that mediate this interaction [14, 15, 29]. Free-

space Q(2) in units of a/λ = 0.2 (dashed light-blue) shown for

comparison. (b) Q
(2)
max ≡ Q(2)(d=a) as a function of a/λ for

the identical (solid), orthogonal (dashed), and free space (dot-
ted) configurations. (c) The largest number of lattice spacings

d/a for which a Q(2) > 1 scales roughly logarithmically with
λ/a. All arrays are 40 × 40 with detunings δLI = 1.05 ωBE

(orthogonal) or δLI = δDLI(k=0) (identical)

the band edge. As this coupling leads to impurity-lattice
states outside of our Markovian approximation, the ana-
lytic value for orthogonal configuration Q(2) in Figs. 3(b)
and 4 are slight overestimates [15], whereas the oscilla-
tions of Fig. 3(a) are exact numerical solutions. Fig. 3(b)
is restricted to δLI > 1.05 ωBE and δLI = 1.05 ωBE in
Fig. 3(a) to limit this error. The yellow regions show the
strong coupling regimes near the band edge (Q(2) ∼ 102),
while the dark blue lines represent regions of vanishing
Q(2) occurring when the free-space and lattice mediated
components of Φsq

Eff destructively interfere.
Strong impurity-impurity coupling also occurs in the

identical configuration. Fig. 3(c) displays this highly-
coherent (Q(2) ∼ 105) excitation probability transfer for
δLI = δDLI(k = 0) and a = d = 0.1λ. In general, iden-
tical configuration impurities reach large Q(2) values for
δLI = δDLI(k = 0) (Fig. 3(d)), where the two impurities
in a Markovian bath approximation holds nearly exactly.
This configuration also exhibits regions of low Q(2) due
to vanishing Φsq

Eff.
For each polarization configuration, we examine the

effect of impurity distance d and lattice spacing a on
Q(2). Larger d weakens both free-space and array me-
diated dipole-dipole interactions, reducing Φsq

Eff. In the
orthogonal configuration, Q(2) is proportional to e−d/ξ

for some parameter dependent length scale ξ (Fig. 4(a)).
This scaling is consistent with the width of exponentially
localized impurity-array bound states [14, 15, 29] and
holds until Q(2) approaches its free-space limit (dashed,
light-blue curve for a/λ = 0.2). The behavior of the
identical configuration is similar, but demonstrates larger
Q(2) for small d. However, as the identical configuration
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stems from few atom dark states, its Q(2) decreases more
rapidly with growing d, rendering it preferable for nearby
impurities [25].

Maximum coupling occurs between impurities in adja-

cent plaquettes. Fig. 4(b) displays Q
(2)
max ≡ Q(2)(d=a).

In the identical configuration, Q
(2)
max diverges as 1/a6 for

small a, which is consistent with the 1/a3 dipole-dipole
interaction strength that mediates the coupling enhance-
ment and linewidth suppression of the dark state. Sim-
ilarly, the orthogonal and free-space configurations ex-
hibit a 1/a3 scaling, which is consistent with coupling
enhancement in a system of relatively static linewidth
(ΓEff ≈ γL for ω > ωBE, see Fig. 2(b)). The size of an
impurity atom network would be limited by the maxi-
mum number of lattice spacings d/a at which a desired
Q(2) could be achieved. Fig. 4(c) shows approximately
logarithmic scaling in λ/a for Q(2) > 1.

Overall, lattice-mediated coupling improves Q(2) by
several orders of magnitude and extends nonlinear
impurity-impurity coupling to tens of lattice sites.
While both configurations achieve these effects, we re-
emphasize that the identical and orthogonal configura-
tions yield larger Q(2) for small and large d, respectively.

In conclusion, we have demonstrated that 2D atom ar-
rays can effectively mediate between single photons and
impurity atoms and have elucidated the role of polar-
ization in these interactions. We find that 2D arrays
feature superior performance to that of their 1D coun-
terparts, as their rich, planar mode structure not only
leads to the higher fidelity photon transfer required for
quantum information processing, but also deterministi-
cally guides photons within the 2D plane [38], creating
quantum network geometries that are infeasible in one
dimension. As the optimal detuning for these coherent
interactions is above the lattice band edge, the excitation
can be localized near the impurity. This allows for nonlin-
ear impurity-impurity interactions that are substantially
stronger and further-reaching than those in free space, re-
sulting in highly coherent two-atom interactions of large
two-impurity quality factorsQ(2). Such predictions could
be experimentally detected by absorption measurement
of individual impurity atoms or by probing time-resolved
coherent dynamics of impurity atom pairs [34, 55, 56].
These results provide a framework for a multilevel treat-
ment [57], which could extend to both array and impurity
atoms and devise coherent switching, quantum gates, and
guided mode excitation [27]. As the system’s strong co-
herence and controllable dissipation display parity-time
symmetry breaking [52], they apply to studies of excep-
tional points [58]. Finally, we note that similar effects
can be explored in solid state systems, such as transition
metal dichalcogenides [59], where excitons could mediate
interactions between localized impurities.
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glund, M. Lončar, D. D. Sukachev, and M. D. Lukin,
Nature 580, 60 (2020).

[23] P. Lambropoulos and D. Petrosyan. Fundamentals of

Quantum Optics and Quantum Information, Springer,
Berlin, Germany, (2007).

[24] M. Anderlini, J. Sebby-Strabley, J. Kruse, and J.
V. Porto, J. Phys. B 39, S199 (2006).

[25] See Supplemental Material at [URL will be inserted by
publisher].

[26] D. E. Chang, J. S. Douglas, A. González-
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