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 15 

The new physics of magic-angle twisted bilayer graphene (TBG) motivated extensive 16 

studies of flat bands hosted by moiré superlattices in van der Waals structures, inspiring 17 

the investigations into their photonic counterparts with potential applications including 18 

Bose–Einstein condensation. However, correlation between photonic flat bands and 19 

bilayer photonic moiré systems remains unexplored, impeding further development of 20 



2 

 

moiré photonics. In this work, we formulate a coupled-mode theory for low-angle 21 

twisted bilayer honeycomb photonic crystals as a close analogy of TBG, discovering 22 

magic-angle photonic flat bands with a non-Anderson-type localization. Moreover, the 23 

interlayer separation constitutes a convenient degree of freedom in tuning photonic 24 

moiré bands without high pressure. A phase diagram is constructed to correlate the 25 

twist angle and separation dependencies to the photonic magic angles. Our findings 26 

reveal a salient correspondence between fermionic and bosonic moiré systems and pave 27 

the avenue toward novel applications through advanced photonic band/state 28 

engineering. 29 

 30 

Moiré superlattices formed in twisted bilayer van der Waals structures have been widely 31 

investigated with exotic phenomena discovered [1-7], including fractional Chern insulators 32 

[8], moiré excitons [9], topological physics [10], and band engineering at high pressures [11]. 33 

Considering various moiré systems demonstrated so far, the TBG system is the most 34 

representative with the feature of a mini-Brillouin zone arising from moiré superlattices 35 

[1-3,12-14]. The report of interlayer hybridization induced magic-angle effects in TBG is 36 

among the milestones of moiré physics, especially the flat momentum-space dispersion 37 

characteristics with nearly zero Fermi velocities and singularities in its density of states 38 

[1-3,15]. Along with the surge of research into magic-angle moiré bilayers in condensed 39 

matter physics, photonic moiré superlattices are also quickly gaining interests, with 40 

demonstrations of Anderson localization and optical solitons in quasi-crystals using 41 
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monolayer moiré patterns in three-dimensional photorefractive materials at large twist angles 42 

[16-18]. Even though the unique correspondence between condensed matter systems and 43 

photonic systems has promised moiré photonics with potential breakthroughs [12,16,18,19], a 44 

quantitative analysis of the photonic analogy of magic-angle moiré systems is still lacking: 45 

the existence of small magic angles in moiré photonic systems has not been observed and 46 

more importantly, a complete model to characterize low-angle twisted photonic bilayers 47 

would guide the exploration and application of twisted photonic systems. 48 

In this work, we report a theoretical model of low-angle twisted bilayer photonic crystals 49 

(TBPC) to solve the photonic moiré bands. By stacking two layers of two-dimensional 50 

photonic crystals with a small twist angle and a subwavelength interlayer separation, 51 

photonic magic angles are discovered with signatures of photonic flat bands, zero light group 52 

velocities and spiky photonic density of states. A modified tight binding model is developed 53 

to take into account high coupling orders in the reciprocal space and optical losses, followed 54 

by the formulation of a continuum description for optical modes. Using this model, a phase 55 

diagram of photonic magic-angle effects as a function of the twist angle and the interlayer 56 

separation is established and found to be consistent with full-wave simulations. The 57 

remarkable design flexibility of electromagnetic response from the photonic systems makes 58 

TBPC an exceptional platform toward better understandings of moiré physics in general, 59 

including new configurations that are not easily achievable in electronic systems. 60 

Figure 1(a) shows schematically the configuration of TBPC considered in this work. We 61 

start with a model system based on two identical honeycomb arrays of silicon nano-disks 62 
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working at telecommunication wavelengths, which are photonic counterparts of graphene. 63 

Our theoretical model for TBPC (Fig. 1(b)) begins with a well-defined transverse electric (TE) 64 

mode hosted in a single disk unit, and we use the coupled mode theory to quantify the 65 

coupling between NN disks. Next, in the same spirit of TBG theory [1], the local and periodic 66 

interlayer coupling in TBPC allows the use of a continuum model for photonic moiré band 67 

calculations. As shown later, specific combinations of the twist angleand the interlayer 68 

separation [20] could lead to photonic magic-angle effects in TBPC. 69 

 70 

FIG. 1. The TBPC system. (a) Schematic of TBPC with light localized in the AA stacking 71 

regions when a photonic magic angle is present (left), along with one representative 72 
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dispersion of flat moiré bands leading to such localized modes (right). The lattice constant of 73 

monolayer honeycomb photonic crystal is 1.2 m, while each nano-disk is 220 nm high with 74 

a diameter of 400 nm. The moiré bands are analytically calculated with a twist angle and 75 

interlayer separation of 5.09o and 50 nm, respectively. Note that the band flattening effect 76 

occurs in the 2nd and 3rd bands, which are around the 0 meV energy shift. (b) Comparison 77 

between the theoretical models for TBG and TBPC. Similar to TBG, the disks in TBPC fall 78 

into two categories: disk ‘𝑎’ and disk ‘𝑏’. However, the coupled modes in TBPC are subject 79 

to non-negligible optical losses. The lattice constants for graphene and honeycomb photonic 80 

crystal are both denoted as ‘d’ [31, 32]. The reference frame is also illustrated where z-axis is 81 

perpendicular to photonic crystal planes. 82 

 83 

We consider two coupled disks of the same shape and material. When the two disks (disk 84 

1 and disk 2) are placed closely enough, the crosstalk between different cavity modes occurs, 85 

which is described by the coupled-mode theory [33, 34]: 86 

{

𝑑𝑎1

𝑑𝑡
= (𝑖𝜔1 − 𝜅1)𝑎1 + 𝑖𝑔12𝑎2

𝑑𝑎2

𝑑𝑡
= (𝑖𝜔2 − 𝜅2)𝑎2 + 𝑖𝑔21𝑎1

                     (1) 87 

where 𝑖, 𝑎 𝜅 and 𝜔 are the imaginary unit, the mode intensity, the decay rate and the 88 

angular frequency, respectively. Note that 𝜅1 = 𝜅2 = 𝜅0and 𝜔1 = 𝜔2 = 𝜔0 for identical 89 

disks. Without loss of generality, we set 𝑔12 = 𝑔21 = 𝑔 [20]. 90 

 For a monolayer honeycomb disk array with a lattice constant 𝑎0, two subsets of disks 91 
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exist and are denoted as ‘𝑎’ and ‘𝑏’ [32, 35]. The NN of one ‘𝑎’ disk is three ‘𝑏’ disks and 92 

vice versa. Thus, the equations of each disk could be written as: 93 

{

𝑑𝑎𝑗

𝑑𝑡
= (𝑖𝜔0 − 𝜅0)𝑎𝑗 + ∑ (𝑖𝑔𝑏𝑗+𝜹)𝜹

𝑑𝑏𝑗

𝑑𝑡
= (𝑖𝜔0 − 𝜅0)𝑏𝑗 + ∑ (𝑖𝑔𝑎𝑗+𝜹′)𝜹′

                     (2) 94 

where 𝜹  and 𝜹′  are the site-to-site displacement with respect to disk ‘𝑎𝑗 ’ and ‘𝑏𝑗 ’, 95 

respectively [20]. Note that 𝑗 is the serial number for different disks. 96 

Using 𝑎𝑗 =
1

√𝑁
∑ exp(−𝑖𝒌 ∙ 𝒓𝑗,𝑎)𝒌 𝑎𝒌  and 𝑏𝑗 =

1

√𝑁
∑ exp(−𝑖𝒌 ∙ 𝒓𝑗,𝑏)𝒌 𝑏𝒌 [36], where 97 

𝒓𝑗,𝑎 (𝒓𝑗,𝑏) is the vector position of 𝑎𝑗 (𝑏𝑗) and N is the total number of ‘𝑎’ (or ‘b’) disks, 98 

Fourier transform is conducted and Eq. (2) is transformed into: 99 

{

𝑑𝑎𝒌

𝑑𝑡
= (𝑖𝜔0 − 𝜅0)𝑎𝒌 + 𝑖𝑔𝑏𝒌 ∑ exp(−𝑖𝒌 ∙ 𝜹)𝜹

𝑑𝑏𝒌

𝑑𝑡
= (𝑖𝜔0 − 𝜅0)𝑏𝒌 + 𝑖𝑔𝑎𝒌 ∑ exp(−𝑖𝒌 ∙ 𝜹′)𝜹′

                 (3) 100 

Now in the reciprocal space, we can see from the equations that the modes localized in ‘𝑎’ 101 

sites (‘𝑎’ modes for brevity) with wavevector 𝒌 will only couple to the ‘𝑏’ modes with 102 

wavevector 𝒌. This is due to the phase-match mechanism [20]. The formation of Dirac cones 103 

is detailed in [20].  104 

In the following, we consider the TBPC case where two identical honeycomb photonic 105 

crystal layers are stacked with a small twist angle. When the twist angle is commensurate, the 106 

superlattice is strictly periodic and the lattice constant is approximately 𝑎0/𝜃. The mini 107 

Brillouin zone of the superlattice is constructed from the difference between the two 𝑲 108 

wavevectors at the K point for the two layers (denoted as 𝑲1 and 𝑲2), as shown in Fig. 109 

2(a). 110 
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 111 

FIG. 2. Inter-site coupling features in TBPC. (a) Top-view of TBPC in the real space showing 112 

moiré patterns due to a twist (left) and the mini Brillouin zone hosted by the moiré 113 

superlattices (right). (b) TBPC inter-site coupling in the reciprocal space, where blue solid 114 

dots and green circles stand for the different modes with specific wavevectors in the photonic 115 

crystal layer #1 and layer #2, respectively. The red hexagon denotes the mini Brillouin zone. 116 

(c) The numerically solved TE mode in a nano-disk (left) and the double-degenerated states 117 

at the Dirac point in a monolayer honeycomb photonic crystal. The disk positions are 118 

indicated by dashed circles. The |E| fields are normalized separately in each panel. (d) The 119 

corresponding Dirac-point feature in the photonic band structure along the M-K- direction. 120 

 121 
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Since both photonic crystal layers can be characterized by Eq. (1-3), we now have four 122 

sets of disks: 𝑎1, 𝑏1, 𝑎2, and 𝑏2, which represent ‘𝑎’ and ‘𝑏’ disks in layer #1 and layer #2, 123 

respectively. Here, we take the disk 𝑎1𝑗 as an example. By only considering NN sites for 124 

interlayer coupling, we have: 125 

𝑑𝑎1𝑗

𝑑𝑡
= (𝑖𝜔0 − 𝜅0)𝑎1𝑗 + ∑ (𝑖𝑔𝑖𝑛𝑡𝑟𝑎𝑏1(𝑗+𝛿1)) + 𝑖𝑔(𝒍𝑎𝑎)𝑎2(𝑗+𝑙𝑎𝑎) + 𝑖𝑔(𝒍𝑎𝑏)𝑏2(𝑗+𝑙𝑎𝑏)𝜹𝟏

    (4) 126 

where 𝒍𝑎𝑎 and 𝒍𝑎𝑏 mean the displacement from disk 𝑎1𝑗 to its closest ‘𝑎’ disk and ‘𝑏’ disk 127 

in layer #2, respectively. Note that for the interlayer crosstalk, we consider the coupling only 128 

between closest disks. This approximation is generally used in TBG and proved by multiple 129 

experiments to be sufficiently accurate [1-3]. The interlayer coupling strength between 130 

different sets of disks is given by the function of 𝑔, written as 𝑔(𝒍𝑎𝑎) and 𝑔(𝒍𝑎𝑏). The 131 

function 𝑔 only depends on the displacement between the two disks in different layers. 132 

 Analogous to the monolayer case, we can define 𝑎1𝒌𝟏
, 𝑏1𝒌𝟏

, 𝑎2𝒌𝟐
, and 𝑏2𝒌𝟐

 from: 133 

𝑎1𝑗 =
1

√𝑁
∑ exp(−𝑖𝒌1 ∙𝒌1

𝒓1𝑗,𝑎)𝑎1𝒌𝟏
, 𝑏1𝑗 =

1

√𝑁
∑ exp(−𝑖𝒌1 ∙𝒌1

𝒓1𝑗,𝑏)𝑏1𝒌1
, 𝑎2𝑗 =134 

1

√𝑁
∑ exp(−𝑖𝒌2 ∙𝒌2

𝒓2𝑗,𝑎)𝑎2𝒌2
, 𝑏2𝑗 =

1

√𝑁
∑ exp(−𝑖𝒌2 ∙𝒌2

𝒓2𝑗,𝑏)𝑏2𝒌2
, and apply these 135 

equations in Eq. (4) for the Fourier transform: 136 

𝑑𝑎1𝒌1

𝑑𝑡
= (𝑖𝜔0 − 𝜅0)𝑎1𝒌1

+ 𝑖𝑔𝑖𝑛𝑡𝑟𝑎𝑏1𝒌1
∑ (−𝑖𝒌1 ∙ 𝜹1) + ∑ (𝜁𝑎𝑎(𝒌1, 𝒌2)𝑎2𝒌2

+𝒌2𝜹𝟏
137 

𝜁𝑎𝑏(𝒌1, 𝒌2)𝑏2𝒌2
)  (5) 138 

where 𝜁𝑎𝑎(𝒌1, 𝒌2) (or 𝜁𝑎𝑏(𝒌1, 𝒌2)) are the coupling strength between 𝑎1𝒌1
 and 𝑎2𝒌2

 (or 139 

𝑏2𝒌2
). Here, we define the unit area of superlattice as 𝑆𝑐. Using the continuum model, 140 

𝜁𝑎𝑎(𝒌1, 𝒌2) can be written as:  141 
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𝜁𝑎𝑎(𝒌1, 𝒌2) =
𝑖

𝑆𝑐
∫ exp (𝑖(𝒌1 − 𝒌2) ∙ 𝒓1,𝑎) ∙ exp(−𝑖𝒌2 ∙ 𝒍𝑎𝑎) ∙ 𝑔(𝒍𝑎𝑎)𝑑2𝑟1,𝑎       (6) 142 

 After the Fourier transform, the following discussion is in the reciprocal space. 143 

Compared to Eq. (3), the first term on the right-hand side of Eq. (5) corresponds to the 144 

property of the disk itself, the second term corresponds to the intralayer coupling 145 

mechanism, and the last two terms describe the interlayer coupling strength. Due the 146 

periodicity of the superlattice, the factor exp(−𝑖𝒌2 ∙ 𝒍𝑎𝑎) ∙ 𝑔(𝒍𝑎𝑎) is also periodic. Thus 𝜁 147 

is zero almost everywhere except the cases when 𝒌2 − 𝒌1 = 𝑛 ∙ 𝑮1 + 𝑚 ∙ 𝑮2. Here 𝑮1 and 148 

𝑮2 are the reciprocal eigenvectors of the superlattice (Fig. 2(b)) [20], which describe the 149 

new phase-match mechanism. 150 

  Next, the AA point (the center of AA stacking region where the top and bottom 151 

honeycomb photonic crystal layers are well aligned [37, 38]) is selected as the origin of 152 

coordinates, based on which proper superlattices are chosen. Within the hexagonal 153 

superlattice around the AA point, we find 𝒍𝑎𝑎 = 𝜽 × 𝒓1𝑗,𝑎  and 𝑲0 ∙ 𝒍𝑎𝑎 = −(𝜽 × 𝑲0) ∙154 

𝒓1𝑗,𝑎, where 𝑲0 represents the wavevector of the midpoint between the two K points (one 155 

for layer #1 and the other one for layer #2). So, Eq. (6) can be written as [20]: 156 

𝜁𝑎𝑎(𝒌1, 𝒌2) =
𝑖

𝑆𝑐
∫ exp (𝑖(𝒌1 − 𝒌2 − (𝜽 × 𝑲0)) ∙ 𝒓1,𝑎) ∙ 𝑔(𝜽 × 𝒓1)𝑑2𝑟1,𝑎       (7) 157 

 From Eq. (7), we obtain the actual value for the interlayer coupling strength. The NN 158 

coupling in real space is a series of inter-wavevector coupling in the reciprocal space. For 159 

instance, if we analyze the 𝒌1 = 𝒌 mode in layer #1, the 𝑎-𝑎 interlayer coupling strength 160 

will reach the maximum when 𝒌2 = 𝒌, 𝒌 + 𝑮1, or 𝒌 + 𝑮2, and this maximum coupling 161 
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strength is denoted as 𝑡1. The second maximum coupling strength 𝑡2 can be found at the 162 

following points: 𝒌2 = 𝒌 + 𝑮1 − 𝑮2, 𝒌 − 𝑮1 + 𝑮2, or 𝒌 + 𝑮1 + 𝑮2 . Higher orders of 𝑡 163 

are localized at outer wavevector points. Compared with TBG [1], for the TBPC 164 

characterized in this work, the interlayer gap (≤200 nm) is much smaller than the monolayer 165 

lattice constant (1.2 m), so higher orders of coupling are relatively strong and 𝑡2 must be 166 

included in the theoretic model. With 𝑡1 and 𝑡2, we are already able to obtain all primary 167 

conclusions.  168 

As a result of considering 𝑡1 and 𝑡2, the 𝒌2 = 𝒌 mode in layer #2 couples to six 169 

modes in layer #1 (Fig. 2(b)): 𝒌, 𝒌 + 𝑮1, 𝒌 + 𝑮2, 𝒌 + 𝑮1 − 𝑮2, 𝒌 − 𝑮1 + 𝑮2, and 𝒌 +170 

𝑮1 + 𝑮2, and vice versa. Since we have four sets of disks in the TBPC (𝑎1, 𝑏1, 𝑎2, 𝑏2), a 171 

total number of 24 modes are considered in our calculation. We truncated the equation to 172 

include these 24 modes (12 for layer #1 and 12 for layer #2), yielding a 24×24 matrix for 173 

diagonalization. From this matrix, together with the electric-field distribution of the 174 

single-disk TE mode (Fig. 2(c)) that leads to the Dirac cone (Fig. 2(d)) [20], we can obtain 175 

the photonic band structures in TBPC with different twist angles and interlayer separation. 176 

Akin to TBG, the photonic moiré bands in TBPC strongly rely on both the twist angle 177 

and the interlayer separation. In Fig. 3(a)-3(d), we solve for the photonic band structures of 178 

TBPC with different twists and an interlayer separation of 80 nm. Note that we only consider 179 

the K point here and the K’ point is not shown for simplicity [1,39]. When the twist angle is 180 

decreased to 4.6o, the group velocity at the Dirac-point energy partially vanishes, and the 181 

hybridized photonic bands get flattened with dispersionless characteristics roughly from Ms 182 
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through Ks, corresponding to a photonic magic angle. The density of states is also peaked due 183 

to the existence of photonic flat bands. As the twist keeps decreasing, the second photonic 184 

magic angle is reached at 3.6o, along with the appearance of magic-angle effects near s. 185 

Further reducing the interlayer twist angle destroys the photonic magic-angle effect. In TBPC, 186 

the number of bands in a fixed energy range goes up monotonically with a decreasing twist 187 

angle. Here, we evaluate the local bandwidth between the two bands closest to the 188 

Dirac-point energy [20], and plot it as a function of the twist angle in Fig. 3(e), which 189 

illustrates the evolution of bandwidth narrowing around these two photonic magic angles. 190 

 191 

FIG. 3. Photonic moiré band structures. (a-d) Energy dispersions and density of states (DOS) 192 

for an interlayer separation of 80 nm and twist angles of 2.8o, 3.6o, 4.6o, and 9o, respectively. 193 

The energy is referenced to the Dirac-point energy. Note that when the twist angle equals 3.6o 194 

and 4.6o, photonic flat bands appear and are highlighted in red. (e) Local bandwidth of the 195 

two photonic bands closest to the Dirac-point energy as functions of the twist angle with an 196 

interlayer separation of 80 nm. The bandwidth reaches minimum at the photonic magic 197 

angles (3.6o and 4.6o).  198 
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 199 

Using the above model, we also observe that the photonic magic angles have a strong 200 

dependence on the interlayer separation. To quantify the evolution of magic angles with 201 

different separation, we normalize the local bandwidth by twist angles [20] and plot it as a 202 

function of the twist angle and the interlayer separation in Fig. 4(a). Only low twists are 203 

calculated due to local coupling approximation in our theoretical model. Here, the minimal 204 

(nearly zero) bandwidths are the direct results of photonic flat bands, and thus are the 205 

indicator for photonic magic angles. Two magic-angle traces can be resolved in Fig. 4(a). One 206 

notable feature of the photonic magic angle is that smaller interlayer separation leads to larger 207 

magic angles: at larger twists, there is a long distance between monolayer Dirac cones, so an 208 

enhanced interlayer coupling strength (i.e. a smaller interlayer separation) is required for 209 

band flattening by compression. Such a trend in TBPC is in good agreement with 210 

pressure-tuned magic angle and band engineering in TBG [40-42]. This correspondence again 211 

testifies the uniqueness of TBPC as a fast and versatile platform for understanding and 212 

designing moiré superlattice systems with van der Waals bilayers. The influence of 𝑡2 is 213 

discussed in [20]. 214 
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 215 

FIG. 4. Phase diagram of photonic magic angles. (a) The phase diagram showing the 216 

normalized local bandwidth with varying twist angles and interlayer separation. (b) 217 

Comparison between the local bandwidth, and the integrated |E| in the AA region calculated 218 

by numerical simulation, which are normalized by the minimum local bandwidth and the 219 

maximum integrated |E|, respectively. The dashed line is a guide to the eye. (c) Evolution of 220 

|E| profile in the AA region with different interlayer separation and a twist angle of 5.09o. (d) 221 

Numerically calculated real-space |E| profile when the twist angle and interlayer separation 222 

are 5.09o and 50 nm, respectively. 223 

 224 
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To test the results of our TBPC model, we perform full-wave numerical simulation of the 225 

TBPC with commensurate twist angles of 4.41o, 5.09o, and 6.01o [20], where the moiré 226 

superlattice has a rigorous periodicity and can be modeled numerically. Simulation details 227 

with additional results can be found in [20]. We find that the photonic flat bands at magic 228 

angles lead to a highly localized optical mode in the AA regions, just as the case of TBG. Fig. 229 

4(b) shows good agreement between our theoretical modeling and numerical simulation: 230 

wherever the theory predicts the existence of photonic flat bands, a strong peak of numerical 231 

|E| in the AA regions can be found nearby. The slight discrepancy here could be reduced by 232 

involving higher orders of coupling in the theoretical model (𝑡3, 𝑡4, etc.). 233 

To further explore the magic-angle effects, the evolution of |E| in the AA region is plotted 234 

in Fig. 4(c), showing that the localized mode immediately decays as the interlayer separation 235 

deviates from the optimal value for the flat bands. A representative large-area |E| profile 236 

associated with photonic flat bands is illustrated in Fig. 4(d), demonstrating strong field 237 

localization in AA regions at the magic angles, in contrast to the field localization in 238 

large-twist-angle quasi-crystals due to Anderson modes [16,18]. The corresponding H-field 239 

profiles also have strong localization in AA regions [20]. Those magic-angle photonic ‘hot 240 

spots’ with zero group velocity may find potential applications in areas such as 241 

photoluminescence enhancement [43], molecular vibration detection [44], and slow light 242 

generation [45]. 243 

In summary, we have discovered the existence of photonic flat bands in two closely 244 

coupled planar photonic crystals at certain magic angles. Furthermore, we have formulated a 245 
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theoretical model to describe the coupling mechanism and calculate the photonic band 246 

structure in the twisted bilayer photonic crystals (TBPC). The evolution of photonic magic 247 

angle with the interlayer separation reveals a striking similarity between the TBPC and the 248 

electronic twisted bilayer graphene (TBG). Extensive numerical simulations further resolve 249 

the photonic ‘hot spots’ localized in the AA regions at the magic angles. Potential 250 

experimental realizations include nano-fabrication technologies [46], two-photon 251 

polymerization lithography [47], and microwave/acoustic devices [48, 49]. For other bilayer 252 

van der Waals moiré structures where moiré band flattening phenomena exist, it is possible 253 

that the corresponding TBPC would also host similar photonic behavior if their mathematical 254 

descriptions match [20]. Note that a judicious design of the TBPC system is necessary to 255 

ensure that the symmetry and coupling conditions of the corresponding van der Waals 256 

bilayers are well preserved in TBPC. It is an important future topic to explore approaches that 257 

are capable of quantitatively interpreting both the moiré photonics and moiré van der Waals 258 

systems. Our model demonstrates an interesting parity between fermionic and bosonic moiré 259 

systems, which not only paves the way to the development of moiré photonics, but also 260 

serves as a tunable platform for probing and predicting new physics in moiré superlattices 261 

generally and in turn guides the exploration of van der Waals structures. 262 
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