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Precision measurements using traditional heterodyne readout suffer a 3dB quantum noise penalty
compared with homodyne readout. The extra noise is caused by the quantum fluctuations in the
image vacuum. We propose a two-carrier gravitational-wave detector design that evades the 3dB
quantum penalty of heterodyne readout. We further propose a new way of realising frequency-
dependent squeezing utilising two-mode squeezing in our scheme. It naturally achieves more precise
audio frequency signal measurements with radio frequency squeezing. In addition, the detector is
compatible with other quantum nondemolition techniques.

Introduction — Since 2015, laser interferometric
gravitational-wave detectors have made a series of di-
rect observations of gravitational waves from mergers of
binary black holes and neutron stars [1–3]. They have
opened a new observational window into the universe and
provided significant inputs to many scientific fields. In
the detector, to translate the electromagnetic sidebands
into a measurable electrical signal, a readout scheme is
required, which is also fundamental for determining the
sensitivity of the detector [4].

Heterodyne readout is widely implemented in preci-
sion measurements, e.g., for the stabilisation of laser fre-
quencies and optical cavities (also known as the Pound-
Drever-Hall technique [5, 6]) and for quantum squeezing
characterisation due to its natural immunity to the low-
frequency laser noise [7–11]. Compared with homodyne
readout, heterodyne readout suffers 3dB noise penalty as
the scheme picks up the vacuum fields above and below
the local oscillator (LO). The additional field that does
not coincide with the signal is called the image vacuum
[12–15]. The noise penalty is a direct and necessary con-
sequence of the Heisenberg uncertainty principle when
all quadratures are allowed to be measured simultane-
ously [16]. In the first-generation of gravitational wave
detectors, a heterodyne readout with two balanced ra-
dio frequency (RF) sidebands was used [17], reducing the
factor of 2 (3dB) quantum penalty to a factor of 1.5. In
that scheme, the vacuum fields which are twice the mod-
ulation frequency away from the carrier couple to the
readout channel [16]. In subsequent detector upgrades
the readout scheme was switched to DC readout [17, 18],
a variant of homodyne readout. The LO in the DC read-
out is derived by slightly detuning the arm cavities, which
offsets the interferometer from a perfect dark fringe. DC
readout has the advantage of a straightforward imple-
mentation without needing an external LO. However,
the dark-fringe offset induces extra couplings of techni-

cal noises and is not ideal for future-generation gravita-
tional wave detectors [19]. A balanced homodyne readout
can eliminate the dark fringe offset by introducing a spa-
tially separated LO [4]. This requires auxiliary optics on
the LO path and additional output optical mode cleaner.
Meanwhile, heterodyne readout is used in current detec-
tors for the stabilisation of auxiliary degrees of freedom,
e.g., the lengths of recycling cavities [20, 21].

Is there a way to evade the fundamental quantum noise
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FIG. 1. Schematic of the two-carrier gravitational-wave de-
tector with heterodyne readout. The red, blue and cyan
lasers correspond to the carriers at ω1, ω2 and the LO at
ωL = (ω1 + ω2)/2 respectively. The three beams are spa-
tially overlapped in the detector. The broadband squeezer is
pumped at 2ωL and has a bandwidth from ω1 −Ω to ω2 + Ω.



2

S
id

eb
an

d
s

Q
u

ad
ra

tu
re

s

Two-mode EPR entanglement

FIG. 2. Two-carrier heterodyne readout with two-mode
squeezing: sideband picture (top) and quadrature picture
(bottom). The two carriers are at frequencies ω1 and ω2. The
LO field is in the middle at ωL = (ω1+ω2)/2. The squeezer is
pumped at 2ωL, entangling sideband pairs symmetric around
the LO field at ωL. This leads to a two-mode EPR entangle-
ment between quadratures on ζ1 and ζ2. Ω is audio frequency
and ωm is the separation between the LO and each carrier.

penalty with heterodyne readout? It was found that the
noise penalty of heterodyne readout could be evaded if
the image vacuum fields can be excited to contain co-
herent signal flux [14, 22, 23]. Inspired by this find-
ing, we give a new gravitational wave detector scheme
that includes two carriers at ω1 and ω2 with a beam at
ωL = (ω1 + ω2)/2 serving as the heterodyne LO. The
three beams are evenly separated by an RF ωm. The
schematic of the design is shown in Fig. 1. The two
carriers resonate and the LO anti-resonates in the arm
cavities. The LO resonates in recycling cavities. This
new design with heterodyne readout will lead to same
quantum-limited sensitivity as with homodyne readout
and the same total arm power.

Another highlight of the two-carrier detector with het-
erodyne readout is the simplicity of generating quantum
squeezing. Most gravitational-wave signals from com-
pact binary system detected by ground-based detectors
are within audio-band, from several hertz to several kilo-
hertz. However, at audio frequencies, excess noises are
significant due to the parasitic interferences from scat-
tered light [24, 25]. In general, even though the signal
field is on dark fringe, bright LO is required for pho-
ton detection and can introduce audio-band scattering
to the audio-band squeezer. We will show that instead of
observing audio-band squeezing [26, 27] around LO fre-
quency, radio frequency squeezing in a broadband two-
mode quantum state is sufficient in our configuration,i.e.
low-frequency signals measurement with high-frequency
squeezing [28, 29]. Note that the audio-band noises with
respect to the carriers cannot be omitted.

Heterodyne readout and two-mode squeezing — In a
single sideband heterodyne readout, two vacuum fileds,
ŝ1,±Ω, ŝ2,±Ω around frequencies ω1 and ω2 are measured
as shown in Fig. 2. The eventual photocurrent contain-
ing the signal and noise can be derived as

I ∝ ŝ†1,−Ωe
i(φL−φD) + ŝ†2,−Ωe

i(φL+φD)

+ŝ1,Ωe
−i(φL−φD) + ŝ2,Ωe

−i(φL+φD) ,
(1)

where φL is the LO phase and is assumed to be π/2 in this
work, φD is the demodulation phase. In the two-photon
formalism [30, 31], the photocurrent is proportional to
the combined quadrature [32]

Q̂ζ = Hζ ·
[
X̂1 Ŷ1 X̂2 Ŷ2

]T
, (2)

with Hζ ≡ [cos ζ1, sin ζ1, cos ζ2, sin ζ2] . Here X̂j , Ŷj (j =
1, 2) represent the amplitude and phase quadrature of
the sidebands ŝ1,±Ω and ŝ2,±Ω, respectively. ζj defines
the measurement quadrature,

ζ1 = φL − φD , ζ2 = φL + φD . (3)

We normalise the shot noise spectral density for the vac-
uum state to be 1. With the pumping laser frequency of
the squeezer at 2ωL, the quadratures of two modes at ω1

and ω2 are correlated [7, 32–34], of which the correlation
is quantified by the covariance matrix,

V =


α 0 β 0
0 α 0 −β
β 0 α 0
0 −β 0 α

 , (4)

where α = cosh 2r, β = sinh 2r and r is the phase squeez-
ing factor. The spectral density of the combined quadra-
ture Q̂ζ in Eq. (2) is given by

HζVHT
ζ = 2α− 2β = 2e−2r , (5)

which is a natural result of the EPR entanglement be-
tween quadratures of the two modes [9, 35–37]. This is
depicted clearly in Fig. 2. This two-mode quantum state
can be achieved with a broadband squeezer, which in
principle gives constant squeezing within the bandwidth
from ω1 −Ω to ω2 + Ω. However, in our scheme, squeez-
ing only around ω1 and ω2—i.e. ωm away from half of
the squeezer pumping frequency—is required to be ob-
served. This means that although we need a broadband
squeezer, good squeezing around ωL is not required to
be observed. In a single-carrier scheme with heterodyne
readout, in which only one of the two modes takes sig-
nal, the noise to signal ratio is 2e−2r, where the signal
part is normalised to be 1. The factor of 2 here corre-
sponds to the well-known 3dB quantum penalty. In the
two carrier scheme, the same total power is divided into
two carriers equally, and the noise to signal ratio becomes
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FIG. 3. Quantum-limited sensitivity of different configura-
tions. The blue curve corresponds to the case of a single-
carrier detector with heterodyne readout. The orange curve
corresponds to the two-carrier detector, which perfectly over-
laps with the dashed yellow curve for homodyne readout.
The solid purple curve is the sensitivity of the two-carrier
detector with 10dB squeezing, which perfectly overlaps with
the dashed green curve for homodyne readout with the same
squeezing. The dot-dashed purple curve corresponds to a
15% power imbalance between the two carriers while the total
power stays constant. The black curve is the Standard Quan-
tum Limit. The detector and filter cavity parameters used in
the two-carrier detector are the same as those of Advanced
LIGO [38, 39] and Advanced LIGO upgrade [40].

2e−2r/(
√

2/2 +
√

2/2)2 = e−2r, which demonstrates the
evasion of the 3dB penalty.

Quantum noise of the detector — So far, we have been
focusing on shot noise. Inside the interferometer, the two
sideband modes interact with the test mass through the
radiation pressure force by beating with the two carriers,
which also introduces radiation pressure noise. When the
interferometer is tuned with equal power in two carriers,
the optomechanical factors describing the interaction of
the modes with the test mass mirrors and their cross
correlation are identical. They are equal to half of the
optomechanical factor K defined in Ref. [41]. Note that
here, because ωm is much smaller than ωj , we neglect the
effect of the difference in the wavelength of two carriers.
The input-output transfer matrix T for the quadratures
of these two modes and their response vector R of the
interferometer to the gravitational wave strain can be
derived as [42]

T = e2iΦ


1 0 0 0

−K/2 1 −K/2 0
0 0 1 0

−K/2 0 −K/2 1

 , R =
eiΦ

hSQL


0√
K

0√
K

 .
(6)

Here Φ = atan(Ω/γ) is the phase of the sidebands at
frequency Ω acquired by reflection from the interferome-
ter with an effective bandwidth γ. The opto-mechanical

factor is

K =
16ωLPγ

mcLΩ2(γ2 + Ω2)
, (7)

where m is the mass of each mirror, and P is the to-
tal circulating power in the arm cavity. The Standard
Quantum Limit of the detector in strain is hSQL =√

8~/(mΩ2L2).
The low-frequency radiation pressure noise can be im-

proved by using frequency-dependent squeezing [41]. The
filter cavity provides frequency dependent quadrature ro-
tations θ1, θ2 for the two modes, which can be described
by [43]

Pθ =


cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0

0 0 cos θ2 − sin θ2

0 0 sin θ2 cos θ2

 . (8)

The quantum noise spectral density of heterodyne read-
out is given by

Shh =
HζTPθVPT

θ T†HT
ζ

|HζR|2
. (9)

When the frequency-dependent rotation angle satisfies

cos(θ1 + θ2) =
1−K2

1 +K2
, (10)

the noise spectrum reaches the minimal value

Smin
hh =

h2
SQL

2

K2 + 1

K
e−2r . (11)

In a special case of Eq. 10, θ1 = θ2 = atanK, the required
frequency dependent rotation angle is the same as that
in the single-carrier detector with homodyne readout [41].
Thus one filter cavity is sufficient and its parameters are
identical to that in single-carrier detector, as long as 2ωm
is an integer multiple of the free spectral range (FSR) of
the filter cavity. In Fig. 3, we plot the noise spectral den-
sities for different configurations as a comparison. The
two-carrier detector with heterodyne readout gives iden-
tical sensitivity to that of Advanced LIGO with homo-
dyne readout. The figure also shows that the scheme is
robust against a power imbalance between the two car-
riers. A rather large 15% power imbalance between the
two carriers under 10dB frequency-dependent squeezing
only results in a 20% degradation in sensitivity at low
frequencies. At low frequencies, where the radiation pres-
sure noise dominates, an ideal EPR measurement at the
output of the interferometer is not enabled due to asym-
metric optomechanical effect from power imbalance. The
impact of a 15% power imbalance on the signal is negli-
gible, leading to only a 0.57% sensitivity degradation at
high frequencies.
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Criteria for macroscopic lengths — In our proposed
scheme, the lengths between core optics need to be care-
fully set to defined absolute values to guarantee co-
resonance of the respective optical fields. This introduces
requirements on the macroscopic lengths, in addition to
the usual requirements for controlling the microscopic
position of the optics. We anticipate this co-resonance
requirement to be relatively easy to achieve, as the cur-
rent lock acquisition system already permits selecting a
specific fringe.

To keep the carriers resonant and the LO beam anti-
resonant in the arm cavities, 2ωm shall be an odd multiple
of the FSR of the arm cavity. Another consideration is on
the coupling between the symmetric and anti-symmetric
ports for both the carriers and the LO. Taking the LO
field as DC by convention (ωL = 0, ω1 = −ωm, ω2 = ωm),
and locking the central Michelson on its bright fringe, we
can treat the central Michelson as an effective mirror with
amplitude transmissivity

rMI = ira sin
ω∆l

c
, tMI = ra cos

ω∆l

c
, (12)

where ω is the sideband frequency, ∆l is the Schnupp
asymmetry [21], and ra is the amplitude reflectivity of
arm cavities. For the LO anti-resonating in the arm cav-
ities, ra = −1, and ω = ωL = 0. For the carriers we have
ra = 1, as well as ω = ω1 = −ωm and ω = ω2 = ωm re-
spectively. To keep the carriers on the Michelson dark
fringe we need to have ωm∆l/c = π/2. The macro-
scopic round-trip length of the signal recycling cavity
and power recycling cavity should be tuned to satisfy
the following conditions: in the signal recycling cavity,
the signal (carrier) modes are anti-resonant, while the
LO beam is resonant; in the power recycling cavity, all
three beams are on resonance. In Advanced LIGO, ωm
is around 2π×45 MHz, so ∆l needs to be around 1.67 m.
Given the Advanced LIGO power and signal recycling
mirror transmissivities of 0.03 and 0.325, the effective
power transmissivity of the LO field from the symmet-
ric port to the anti-symmetric port is around 25%. To
use one filter cavity for two modes, we can make 2ωm
be an integer multiple of the FSR of the filter cavity, as
mentioned earlier.

The mirror motion coupling at 2ωm — With two car-
riers resonating in the arm cavities, the mirror motion
around 2ωm sensed by one carrier is also measured within
the audio-band with respect to other carrier. The addi-
tional noise current is

I2ωm ∝ ŝ
†
1,2ωm−Ωe

i(φL+φD) + ŝ†2,−2ωm−Ωe
i(φL−φD)

+ŝ1,2ωm+Ωe
−i(φL+φD) + ŝ2,−2ωm+Ωe

−i(φL−φD) ,
(13)

where φL = π
2 , φD = 0 in our scheme. Around frequency

2ωm, the radiation pressure also excites mirror motion at
the vibration mode resonances of the mirror. The sus-
ceptibility at 2ωm + Ω of the vibration mode at resonant

frequency ωa can be modelled as a harmonic oscillator
with damping part described by mechanical dispersion,
ψ (ψ = 1/Q, Q is the quality factor), as [44]

χa =
1

µm [ω2
a + iω2

aψ − (2ωm + Ω)2]
, (14)

where µ is an effective mass coefficient which includes the
coupling between mirror mode and the carrier Gaussian
mode.

In order to not affect the quantum sensitivity, we need
the radiation pressure induced mirror motion around
2ωm to be much smaller than the quantum shot noise.
In other words, |χa| need to be much smaller than the
absolute value of the free mass susceptibility, 1/(mΩ2),
at frequency where radiation pressure noise is approx-
imate to shot noise. For ωa = 2ωm + Ω, and taking
Ω = 2π × 60 Hz, L = 4 km, ωm ≈ 2π× 45 MHz, this
requires

Q

µ
� 2.25× 1012 . (15)

Around 90 MHz, the Q of silica is around 105 [45]. We
use program, Cypres [46] and simulate the effective mass
coefficients up to 300 kHz taking Advanced LIGO mirror
and beam size as the example. As it turns out µ is always
larger than 0.1 without observing a trend of smaller µ
towards higher frequency. Details are in Supplementary
Material. It proves the satisfaction of Eq. 15 indirectly.

The thermal noise at 90 MHz from the mode at the
same frequency can be calculated as [44]

√
Sth =

√
4× 4kBTQ

µmω3
aL

2

= 2.4× 10−25

√
T

300 K
× 1

µ
× Q

105

1√
Hz

,

(16)

with a bandwidth around ωa/(2πQ) = 900 Hz. kB is the
Boltzmann constant, T is the environment temperature.
From the mode simulation (with details in Supplemen-
tary Material), we observe the density of modes with µ
no larger than 1 is almost constant over frequency and
around one mode per 2.5 kHz in average. Even though
assuming that the mode separation is the same as the
mode bandwidth, the thermal noise at 90 MHz results
3.1× 10−25 1√

Hz
, by taking contributions from 100 modes

in the vicinity into account. The thermal noise is compat-
ible with the quantum noise of the two-carrier detector
but experimental studies with more details are required
in the future.
Conclusions and Discussions — We have shown that

the proposed two-carrier gravitational wave detector with
heterodyne readout evades the 3dB quantum penalty of
conventional heterodyne readout. It also allows the us-
age of two-mode squeezing in the same way of single
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mode squeezing with homodyne readout. Furthermore,
the two-carrier detector provides advantages: (1) it can
enable squeezing enhanced measurements in the audio-
band and below with high-frequency squeezing, which is
immune to the audio-band LO scattering contamination
to the squeezer, although is still susceptible to the scat-
tering from residual carriers; (2) it allows us to operate
the interferometer on the dark fringe without an addi-
tional LO path and output mode cleaners that are essen-
tial to the balanced homodyne readout scheme, in which
two mode cleaners are required [32]. If the higher opti-
cal modes at the dark port cannot be suppressed by the
interferometer itself, one output mode cleaner of which
the FSR equals to ωm is sufficient.

As an outlook, we want to highlight that the two-
carrier detector is compatible with general quantum non-
demolition schemes [47, 48], in contrast to conventional
heterodyne readout [16]. For example, similar to the im-
plementation of frequency dependent squeezing, we can
add a filter cavity at the output to realise frequency-
dependent readout for back action evasion [41]. The re-
sulting optimal sensitivity is

Sopt
hh =

h2
SQL

2

1

K
e−2r . (17)

This saturates the fundamental quantum limit or the
quantum Cramér-Rao bound [49–52].
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