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Variational quantum eigensolvers (VQEs) combine classical optimization with efficient cost func-
tion evaluations on quantum computers. We propose a new approach to VQEs using the principles
of measurement-based quantum computation. This strategy uses entangled resource states and lo-
cal measurements. We present two measurement-based VQE schemes. The first introduces a new
approach for constructing variational families. The second provides a translation of circuit-based
to measurement-based schemes. Both schemes offer problem-specific advantages in terms of the
required resources and coherence times.

Variational methods are crucial to investigate the physics
of strongly correlated quantum systems. Numerical tools
like the density matrix renormalization group [1–4] have
been applied to several problems including real-time dy-
namics [5], condensed matter physics [6], lattice gauge the-
ories [7–10], and quantum chemistry [11, 12]. Neverthe-
less, the classes of states that can be studied with classical
computers is limited [13]. Variational quantum eigensolvers
(VQEs) overcome this problem using a closed feedback loop
between a classical computer and a quantum processor [14–
16]. The classical algorithm optimizes a cost function –
typically the expectation value of some operator – which is
efficiently supplied by the quantum hardware. The VQE
provides an approximation to the (low-lying) eigenvalues
of this operator and the corresponding eigenstates. VQEs
are advantageous for a variety of applications [16–22] and
have been experimentally demonstrated in fields including
chemistry [23, 24], particle physics [25–28], and classical
optimization [29–31].

Existing VQE protocols are based on the circuit model,
where gates are applied on an initial state [32]. These gates
involve variational parameters whose optimization allows
the resulting output state to approximate the desired tar-
get state. We propose a new approach to VQE protocols,
based on the measurement-based model of quantum com-
putation (MBQC) [33–38]. In MBQC, an entangled state
is prepared and the computation is realized by performing
single-qubit measurements. While the circuit-based and
measurement-based models both allow for universal quan-
tum computation and have equivalent scaling of resources
[36], they are intrinsically different. The former is limited
by the number of available qubits and gates that can be
performed, and MBQC by the size of the entangled state
one can generate. For certain applications, the required co-
herence times [39, 40] and error thresholds [36, 39–41] are
much less demanding for MBQC.

Here, we develop a new variational technique based on
MBQC, that we call measurement-based VQE (MB-VQE).
Our protocols determine the ground state of a target Hamil-
tonian, which is a prototypical task for VQEs with wide-
ranging applications [14, 20–23, 26, 42]. The underlying

FIG. 1. MB-VQE schemes. (a) Variation of a problem-
specific ansatz state by ‘edge decoration’. An ansatz graph state
starts the MB-VQE in a suitable corner of Hilbert space (choice
of green island). Next, a classical algorithm explores the neigh-
bourhood (runner on black arrow). The variational optimization
exploits a custom state that is obtained by decorating the edges
of the ansatz state with auxiliary qubits (orange circles). Their
measurement in rotated bases R(θ) with variational parameters
θ transforms |ψa〉 into the output state |ψout〉. (b) Direct trans-
lation of a VQE circuit into a MB-VQE. Left: circuit consist-
ing of Clifford gates (black) and single-qubit parametric gates
(‘knobs’). Right: corresponding MB-VQE, where the Clifford-
part of the circuit has been performed beforehand. The custom
state consists of output (white circles) and auxiliary (orange cir-
cles) qubits only; the latter are measured in rotated bases and
are related to the ‘knobs’ in the circuit.

idea is to use a tailored entangled state called ‘custom
state’, that allows for exploring an appropriate corner of
the system’s Hilbert space [Fig. 1(a)]. This custom state
includes auxiliary qubits which, once measured, modify the
state of the output qubits. The choices of the measure-
ment bases, and the corresponding variational changes to
the state, are controlled by a classical optimization algo-
rithm. This approach differs conceptually and practically
from standard VQE schemes since MB-VQE shifts the chal-
lenge from performing multi-qubit gates to creating an en-
tangled initial state.
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After presenting the framework for the MB-VQE, we de-
sign two specific schemes that are suited to different prob-
lem classes. First, we introduce a novel method to construct
variational state families, illustrated using the toric code
model with local perturbations [43]. As Fig. 1(a) shows,
we start from an ansatz state |ψa〉 in an appropriate corner
of the Hilbert space. To explore this neighbourhood using
a classical optimization algorithm, we introduce a custom
state and apply measurement-based modifications of |ψa〉
that have no direct analogue in the circuit-model. The re-
sulting variational family is not efficiently accessible with
known classical methods and is more costly to access with
circuit-based VQEs.

Second, we introduce a direct translation of circuit VQEs
to MB-VQEs [Fig. 1(b)]. Here, the variational state family
is the same for the circuit- and the measurement-based ap-
proaches, but the implementation differs as the MB-VQE
requires different resources and is manipulated by single-
qubit measurements only. We exemplify this direct trans-
lation for the Schwinger model [44] and highlight the dif-
ferent hardware requirements and the scaling of resources.
As explained below, a translation to MB-VQE is advan-
tageous for circuits containing a large fraction of so-called
Clifford gates (e.g. CX gates), as these are absorbed into
the custom state.

While MB-VQE is platform agnostic, it opens the door
for complex quantum computations in systems where long
gate sequences or the realization of entangling gates are
challenging. In particular, MB-VQE offers new routes for
experiments with photonic quantum systems, thus enlarg-
ing the toolbox of variational computations.

General framework The main resource of MBQC are
so-called graph states [45, 46]. Graphs as in Fig. 1 are sta-
bilizer states (eigenstates with +1 eigenvalues) of the op-
erators Ŝn = X̂n

∏

k Ẑk, where k refers to the vertices con-
nected to site n. To obtain the desired final state encoded
in the output qubits (white circles), single-qubit measure-
ments are performed on auxiliary qubits (orange circles),
either in the eigenbasis of the Pauli operators X̂, Ŷ , Ẑ, or
in the rotated basis R(θ) ≡ {(|0〉±eiθ|1〉)/

√
2}. Depending

on the measurement outcomes, the system is probabilis-
tically projected into different states. To make the com-
putation deterministic, so-called byproduct operators and
adaptive measurements are required [36]. The former ap-
plies X̂ and Ẑ operators to the output qubits depending on
the measurement results, while the latter involves adapting
the measurement bases R(θ) based on earlier measurement
outcomes. Consequently, adaptive measurements must be
performed in a specific order.

An advantage of MBQC is the possibility to simultane-
ously perform all non-adaptive measurements at the be-
ginning of the calculation (see Fig. 1(b) and Supplemen-
tal Material (SM) [47]). This corresponds to the Clifford
part of a circuit and includes single- and many-qubit gates.
This is independent of the position of the gates in the cir-
cuit, and reduces the required overhead and coherence time.

Remarkably, this can be either done directly on the graph
state in the quantum hardware, or on a classical computer
before the experiment. In the latter case, the Gottesmann-
Knill theorem [48] allows for efficiently determining the cus-
tom state which is local-Clifford equivalent to the quantum
state obtained after all non-adaptive measurements are per-
formed [49]. This state can be directly prepared and used
for the MBQC, which may have dramatically fewer auxil-
iary qubits compared to the initial graph state.

We now explain how MBQC is used to design a MB-
VQE. While the classical part of the feedback loop is un-
touched (the best optimization algorithm [50–55] is prob-
lem dependent [26, 56]), the MB-VQE is based on the cre-
ation and partial measurement of a tailored graph state
rather than the application of a sequence of gates. Specifi-
cally, the quantum part of a MB-VQE comprises an ansatz
state |ψa〉, a custom state, and a measurement prescrip-
tion. As schematically represented in Fig. 1(a), |ψa〉 is a
graph state from which we start exploring the variational
class of families attainable by the MB-VQE. The custom
state is then created by expanding |ψa〉 into a bigger graph
state. This is done by decoration, i.e. by adding new ver-
tices and connecting them to pre-existing sites in the ansatz
state. According to a measurement prescription, which is
the same at each iteration of the algorithm, the auxiliary
qubits of the custom state are then measured, with the re-
maining ones constituting the output |ψout〉 of the quantum
processor [see Fig. 1(a)]. The cost function to be fed into
the classical side of the MB-VQE is then calculated from
|ψout〉 (e.g. its energy), with the angles θ of the rotated
bases R(θ) being the variational parameters over which the
optimization occurs.

Just like the circuit in a VQE, the custom state deter-
mines the success of our MB-VQE. Generally, the more aux-
iliary qubits are measured in rotated bases R(θ), the bigger
the available class of variational states that can be explored.
However, an excessive number of parameters θ makes the
algorithm’s convergence slower. Therefore, it is convenient
to tailor the custom state to the considered problem. And
qubit decoration, with the subsequent measurement of the
auxiliary qubits, allows for remarkable control over the de-
sired ansatz state’s transformation(s). Not only can one ap-
ply gates – just like in a circuit-based VQE – by following
MBQC prescriptions (see the Schwinger model example),
one can also identify completely new patterns of auxiliary
qubits, that modify the output state in a way that would
be expensive or even impossible with the circuit formalism
(see the toric code example). For instance, a single auxil-
iary qubit measured in R(θ) and connected to an arbitrary
number of output qubits {1, 2, 3, . . .}, acts ei

θ
2
Ẑ1⊗Ẑ2⊗Ẑ3⊗...

onto them [35]. In a circuit, the same operation requires a
linear number of two-qubit gates [57].

State variation by edge-modification (perturbed
toric code) Here, we demonstrate how a MB-VQE manip-
ulates states in a different way than a circuit-based VQE.
MB-VQEs are advantageous whenever a perturbation Ĥp
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FIG. 2. Perturbed toric code. (a) Edge modification re-
source for the MB-VQE [see Fig. 1(a)]. Four auxiliary qubits
(orange circles), labelled (m,n)i (i = 1, . . . , 4), are added to
two connected output qubits m and n (white circles). (b)
Graph state representation of the ansatz state |0, 0〉L. Addi-
tional Hadamard gates are applied to qubits with dashed lines.
(c) Relative difference between the MB-VQE result and the true
ground state energy vs the perturbation strength. We let λn

in Eq. (1) be equal on all qubits (solid blue line), or sampled
from a normal distribution PG of average λ and variance 0.1λ
(red squares). Green triangles describe a perturbation acting
strongly on λ1 and weakly on the other qubits. Dotted and
dashed lines are computed with respect to |0, 0〉L (ansatz state)
and |1〉

⊗
2NxNy (ground state of Ĥp) for λn = λ ∀n.

is added to a Hamiltonian Ĥ0 whose ground state, used
as ansatz state |ψa〉 below, is a stabilizer state or a graph
state.

To create the custom state from |ψa〉 we employ the pat-
tern in Fig. 2(a), that decorates each connected pair of
output qubits m and n with four auxiliary qubits (m,n)i
(i = 1, . . . , 4), to be measured in rotated bases R(θ). De-
pending on R(θ), the entanglement between the qubits m
and n is modified, and their state subjected to an additional
rotation. For example, if all auxiliary qubits in the custom
state are measured with θ = 0, we obtain the original ansatz
state. However, if all auxiliary qubits are measured with
θ = π/2, then all entanglement of |ψa〉 is eliminated (for
more details, see SM [47]). This decoration technique is tai-
lored to the perturbed toric code example below, in which
the ground states of Ĥ0 and Ĥp are maximally entangled
and pure, respectively. However, it can be easily general-
ized to expand the class of available variational states (see
SM [47]), thus suiting different scenarios.

We apply this MB-VQE approach to the toric code
model, a quantum error-correcting code defined on a
two-dimensional rectangular lattice with periodic bound-
ary conditions [58]. On the lattice, the number of rows
(columns) of independent vertices is Nx (Ny) and edges
represent qubits. The toric code state is a stabilizer state
of so-called star Âs and plaquette B̂p operators. For any
vertex s in the lattice, Âs acts Ẑ on the four incident edges,
while B̂p acts X̂ on the four edges in the p-th plaquette.
The toric code Hamiltonian is then Ĥ0 = −

∑

s Âs−
∑

p B̂p.

Since
∏

s Âs =
∏

p B̂p = 1, the toric code has 2NxNy − 2

independent stabilizers, and Ĥ0 has four degenerate ground
states |r, t〉L (r, t = 0, 1), called logical states below. These
are simultaneous eigenstates of Ĥ0 and the two logical-Z
operators [58], as explained in the SM [47].

The perturbation added to the toric code Hamiltonian is

Ĥp =

2NxNy
∑

n=1

λnẐn, (1)

which corresponds to an inhomogeneous magnetic field.
As ansatz state for the MB-VQE we choose the highly
entangled graph state |ψa〉 = |0, 0〉L, that approximates
the ground state of Ĥ0 + Ĥp for small positive values of
λn. The graph state representation of |0, 0〉L can be cal-
culated efficiently classically [49] and is shown in Fig. 2(b)
for Nx = Ny = 2. In SM [47], we explain how to adapt
our MB-VQE protocol to use an arbitrary superposition of
|r, t〉L (r, t = 0, 1) as ansatz state, which is more suited for
different kinds of perturbations Ĥp.

Numerical results for the MB-VQE are shown in
Fig. 2(c). The relative energy difference between the MB-
VQE result and the true ground state (calculated via ex-
act diagonalization) is plotted against the perturbation
strength. This is done with all λn in Eq. (1) equal to λ
(solid blue line), with each λn drawn from a Gaussian distri-
bution PG(µ, σ

2) with mean µ = λ and variance σ2 = 0.1λ
(orange squares), and with λ1 = λ, λn randomly sampled
from PG(µ = 0.1, σ2 = 10−4) for n 6= 1 (green triangles).
A plot of the infidelity resembles Fig. 2(c), with maximum
infidelities for the blue curve, red squares and green tri-
angles being 6.2×10−2, 6.5×10−2, and 9.4×10−3, respec-
tively. Fig. 2(c) shows that the MB-VQE produces the
ground state energy with high confidence when the pertur-
bation strength is very small or very large. Notably, the
MB-VQE outperforms the ansatz state (dotted black line)
and the ground state of Ĥp in Eq. (1) (dashed black line)
in all cases. If the perturbation only acts on one qubit, the
chosen custom state allows the MB-VQE to find the ex-
act ground state energy within machine precision. This is
also the case if the perturbation acts on two disconnected
qubits, provided we connect them and add auxiliary qubits
as in Fig. 2(a). This suggests that the outcome of the MB-
VQE can be significantly improved by adding few extra
auxiliary qubits.

Translating VQEs into MB-VQEs (Schwinger
model) Instead of the approach described above, one can
create a MB-VQE by translating the circuit of a VQE into
its corresponding custom state and a sequence of measure-
ments. Since a universal set of gates can be realized in a
MBQC [36], any VQE can be translated into a MB-VQE.
As we discuss below, this strategy is advantageous if the
number of parametric adaptive measurements [i.e. âĂŸ-
knobsâĂŹ in Fig. 1(b)] in the resulting MB-VQE scheme
is small.

As an example, we determine the ground state energy of
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FIG. 3. Schwinger model. (a) Ansatz state and VQE circuit
for S = 4 qubits and K layers. Each layer consists of CX
gates and local rotations (orange) parametrized by angles θnν,i
(with rotation axis ν = x, z; i = 1, . . . , 4). (b) MB-VQE custom
state for K layers. White circles are output qubits. Auxiliary
qubits (orange) are measured in a rotated bases R(θ). (c) The
order parameter 〈Ô〉 vs the fermion mass µ. The dashed line
and dots represent exact diagonalization (ED) and (MB-)VQE
results, respectively, with the number of layers K indicated in
the legend. The inset shows the infidelity 1 − F . (d) Relative
energy difference ∆E/E between (MB-)VQE results and ED for
µ = −0.7, versus the number of iterations in the optimization
procedure. The variational parameters are initialized at zero,
and J = ω = 1 in Eq. (2).

the Schwinger model [44], a testbed used for benchmarking
quantum simulations in high energy physics [8, 25, 59]. The
Schwinger model describes quantum electrodynamics on a
one-dimensional lattice and can be cast in the form of a
spin model with long range interactions [60–62],

Ĥ =
J

2

S−2
∑

n=1

S−1
∑

k=n+1

(S − k)ẐnẐk −
J

2

S−1
∑

n=1

nmod2
n
∑

k=1

Ẑk

+ w
S−1
∑

n=1

(

σ̂+
n σ̂

−
n+1 + H.C.

)

+
µ

2

S
∑

n=1

(−1)nẐn,

(2)

where S is the number of fermions, µ their mass, w = 1
2a ,

and J = g2a
2 . Here, a and g are the lattice spacing and the

coupling strength, respectively, and σ̂±
n = (X̂n ± iŶn)/2.

For the VQE protocol, we assume the typical situation
where parametric single-qubit gates and fixed entangling
gates (CXs) are used [23, 63]. We consider a generic VQE
circuit, in which a sequence of ‘layers’ is applied [14], each
containing local rotations and entangling gates. As shown

in Fig. 3(a) for S = 4, we choose the layer

S/2−1
∏

n=1

CX2n,2n+1

S/2
∏

n=1

CX2n−1,2n

S
∏

n=1

Ûx,n(θx,n)Ûz,n(θz,n),

(3)
where Ûν,n(θν,n) = exp (iθν,nV̂n/2) [(ν, V̂ ) = (x, X̂) or
(ν, V̂ ) = (z, Ẑ)]. The circuit for the VQE is created by
concatenating K layers, where K is big enough to suf-
ficiently explore the relevant subsector of the considered
Hilbert space. As described in the SM [47], the MB-VQE
custom state corresponding to a K-layer circuit is obtained
by joining the measurement patterns of the gates in Eq. (3),
and performing all non-adaptive measurements classically,
which effectively removes the Clifford parts of the circuit.
The custom state is shown in Fig. 3(b). As ansatz state we
use |ψa〉 =

⊗S
n=1|+〉.

The (MB-)VQE simulation results are shown
in Fig. 3(c) for S = 4 and different values
of K. We plot the order parameter 〈Ô〉 =

1
2S(S−1)

∑

i,j<i〈(1 + (−1)iẐi)(1 + (−1)jẐj)〉 against the
fermion mass µ and correctly observe a second-order phase
transition around µ = −0.7 [25, 64, 65]. Increasing K
improves the ground state approximation, as demonstrated
by the inset in Fig. 3(c) and by Fig. 3(d). The points near
the phase transition require K & 3 layers (& 28 qubits),
whereas K = 1 layer (12 qubits) suffices for the easiest
points. Note that allowing different gates as resources in
Eq. (3) generally leads to different convergence rates, as
demonstrated by the results in Ref. [25].

Perfect platforms provided, both the VQE and the MB-
VQE give the same result. However, the quantum hard-
ware requirements are different for the two methods. The
circuit-based VQE requires S qubits, 2KS single-qubit op-
erations, and K(S − 1) entangling gates. For the corre-
sponding MB-VQE, a custom state of S(2K+1) qubits and
2KS single-qubit operations (measurements) are required.
Generally, translating a VQE into its corresponding MB-
VQE is advantageous whenever the VQE circuit involves
a large Clifford part compared to the number of adaptive
measurements (i.e. knobs). In this case, MB-VQE avoids
the requirement of performing long gate sequences, which
is currently challenging due to error accumulation. This is
especially interesting for platforms where entangling gates
are hard to realize (e.g. photonic setups) or in systems with
limited coherence times.

Conclusions In this paper, we merged the principles of
measurement-based quantum computation and quantum-
classical optimization to create a MB-VQE. We presented
two new types of variational schemes, that are applicable
but not restricted to the examples given. The first applies
when the ansatz state is a stabilizer state. In this case, it
is classically efficient to determine the corresponding graph
state [49], which is decorated with additional control qubits
and prepared directly. We applied this MB-VQE to the per-
turbed toric code. Additionally, we showed how to adapt
any circuit-based VQE to become a MB-VQE, with the
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Schwinger model as example.

Experimental proof-of-concept demonstrations can be
explored by considering the smallest instance of the pla-
nar code [58] with a perturbation on a single qubit as first
step. In this scenario, the MB-VQE requires as few as
eight entangled qubits instead of the 44 used above. Espe-
cially promising candidate systems include superconduct-
ing qubits, and photonic platforms. The latter recently
demonstrated the capability to entangle several thousands
of qubits [66, 67], and to create tailored graph states [68–
71]. When designing custom states for future experiments,
it will be important to understand the effects of decoherence
and it will be interesting to investigate whether MB-VQEs
retain the high robustness of MBQC against errors [39–41].

Our scheme based on edge decoration provides a new
way of thinking about state variations in VQEs. In partic-
ular, the effects resulting from measuring only one or few
entangled auxiliary qubits can be challenging to describe
with a simple circuit. The resulting state modifications do
not necessarily correspond to unitary operations and can
affect a large number of remaining qubits [35]. Accord-
ingly, MB-VQEs can lead to schemes in which few auxil-
iary qubits suffice to reach the desired state, while many
gates would be required in a circuit-based protocol. Just
like circuit optimization in standard VQEs [72], tailored
decorations can lead to more resource-efficient MB-VQEs,
with the custom state optimized to the specific problem.
The framework presented here provides a starting point for
designing VQEs whose properties are different and comple-
mentary to the standard approach that is based on varying
a state by applying gates.
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