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We present results on an automaton model of an amorphous solid under cyclic shear. After a
transient, the steady state falls into one of three cases in order of increasing strain amplitude: i) pure
elastic behavior with no plastic activity, ii) limit cycles where the state recurs after an integer period
of strain cycles, and iii) irreversible plasticity with long-time diffusion. The number of cycles, N
required for the system to reach a periodic orbit diverges as the amplitude approaches the yielding
transition between regimes ii) and iii) from below, while the effective diffusivity, D of the plastic
strain field vanishes on approach from above. Both of these divergences can be described by a
power-law. We further show that the average period, T , of the limit cycles increases on approach
to yielding.

The behavior of many athermal amorphous solids –
emulsions, foams, non-Brownian suspensions of soft par-
ticles, compressed granular materials – exhibits a com-
mon phenomenology. At small stresses and strains, elas-
ticity prevails, loading is essentially reversible, and the
material comes back to its original shape when unloaded
without any dissipation of energy. At larger stresses and
strains, however, the situation is more subtle. There are
many different ways to characterize yielding in these ma-
terials. One could ask at what point the material begins
to: i) exhibit dissipative events where the energy input
by the external drive begins to become dissipated; ii) be-
come mechanically irreversible in the sense of retaining
a residual strain when unloaded to zero stress; or iii) be-
come microscopically irreversible in the sense that the
system does not return to its original microscopic config-
uration when unloaded. Recent work has shown, perhaps
surprisingly, that these different notions of yielding can
be subtly distinct.

Lundberg et. al. [1] studied experiments and com-
puter simulations of two dimensional (2D) bubble rafts.
They found that, under cyclic shear at strains of around
40%, reversible and irreversible energy-dissipating events
could coexist. In the reversible transitions, a local con-
figuration of particles would undergo a topology change
during forward shear but revert to its original topol-
ogy upon reversal, while the irreversible transformations
would never revert. Keim and Arratia [2, 3] studied a raft
of a polystyrene particles at an oil-water interface driven
in a planar Couette shear flow and observed similar re-
versible and irreversible topological transformations. At
the smallest strain amplitude, all transformation eventu-
ally went away after many cycles. Then at larger strain
amplitude, irreversible transformations eventually went
away after many cycles, while reversible transformations
remained. Finally at the largest strain amplitudes irre-
versible transformations persisted indefinitely. Knowlton
et. al. [4] studied a disordered emulsion at various droplet
volume fraction. They used a digital image correlation

technique to analyze confocal microcopy images to infer
droplet displacements during each full cycle and found a
sharp transition as a function of strain amplitude in the
single-cycle mean squared displacement, similar in spirit
to Keim’s measurements of the topological transforma-
tions, and used this to define a yielding threshold.

Progress has also been made in particle-based com-
puter simulations. Priezjev [5] performed low tempera-
ture molecular dynamics (MD) simulations of a Lennard-
Jones (LJ) glass and also observed a transition from re-
versible transformations at small strain to irreversible
at larger strain. Fiocco et. al. [6] performed athermal
quasistatic (AQS) simulations of a similar LJ glass and
similarly found a sharp transition from reversible to ir-
reversible transformations at a characteristic strain with
a growing diffusion coefficient in the irreversible regime.
Regev et. al. [7] also performed AQS simulations of a
LJ glass. Their observations were a bit more nuanced.
They found that below a critical strain amplitude, af-
ter many cycles, the system eventually settled into a so-
called n-cycle where it would return to its initial con-
figuration after not 1, but, rather n strain cycles. The
characteristic number of strain cycles required to reach
this limiting periodic orbit was shown to diverge as the
strain amplitude approached the yield strain, but, impor-
tantly, their periods remained unstudied. More recently
Kawasaki and Berthier [8] have performed MD-like simu-
lations and have analyzed both single-cycle stroboscopic
information as in Knowlton et. al. [4] and also looked
at long-time diffusion as in references [5] and [6] where
they found a first-order like discontinuous jump in both
these quantities at the yielding point. Other theoretical
works have also appeared recently addressing the issue of
reversibility in cyclic shear [9–12].

Here we study a meso-scale, integer automaton model
for amorphous plasticity in the AQS limit. The model is
similar to many others proposed recently (see [13] for a
review), but it is unique in that it is deterministic af-
ter the system is initialized (see also Refs [14, 15] in
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a close spirit for crystalline plasticity). This makes it
appropriate to map onto experiments and deterministic
particle-based simulations of athermal systems. We show
that despite its dramatic simplicity compared to particle-
based models, it captures their essential emergent behav-
ior, and importantly, the existence of the non-trivial limit
cycles during which reversible plastic relaxation occurs.
Furthermore, owing to the reduced computational com-
plexity, we are able to gain detailed information about
the statistics of the periods of the limit cycles and how
they vary on approach to the yielding transition. Finally,
we show that the average period grows on approach to
yielding.

Our 2D mesoscale model is based on shear transforma-
tions [13]. Details are specified in the SI, but briefly: the
plane is tiled into discrete elements. The total strain, εt,
at each site is additively decomposed into an elastic and
plastic piece: εt = εe +εp. εe gives rise to stress, σ = µεe,
and we set µ = 1, so εe and σ are completely interchange-
able. The plastic thresholds are set to +1 and −1 in the
forward and backward directions, respectively. The plas-
tic strain increment δεp is set to 2, which guarantees a
single-valued strain energy function as explained in the
SI. During a local yielding event, εp is updated at the
locus of yielding and only there, while εt and εe are up-
dated by equal amounts everywhere else according to the
rules of linear elasticity in analogy with Eshelby’s clas-
sical solution for a plastic inclusion in an elastic matrix
(see the SI and reference [13] for details).

Many previous works have employed similar mod-
els [16–32], but the model we use here is different in a
few crucial ways. In particular, we use an integer valued
εp field with no stochasticity aside from the random ini-
tial conditions we impose on the εp field. Precise details
are spelled out in the Supplementary Material along with
references to related models [13, 17, 20, 22, 23, 30, 32–
38]. [39] The dynamical evolution rules for the automa-
ton are: i) for a given stress field, synchronously allow
all sites over threshold to yield and recompute the stress
field everywhere, ii) repeat this until all sites are below
threshold, iii) advance the globally applied total strain
until precisely one site is at its stability threshold. Im-
plementing the model as a deterministic automaton al-
lowed us to obtain the periodic limit cycles we describe
below analogous to those observed in particle-based sim-
ulations [7]. In this study, we used a 128x128 tiling and
an ensemble of 20 systems. The system was initialized
from a uniform stress free state by imposing a random
uncorrelated plastic strain field and then allowing the
system to relax. This procedure corresponds to a rapid
quench from a high temperature state. The σ (and εp)
field in this quenched state has spatial correlations simi-
lar to particle-based simulations [36–38].

After initialization, the system was subjected to cyclic
shear at various strain amplitudes, γ0. In figure 1a), we
show the plastic strain for one typical member of the en-

FIG. 1. a) Total plastic strain εp , and b) the mean squared
value,Vi+1,i, of the single-cycle-incremental plastic strain for
a particular realization. Both are plotted vs cycle number for
three cycling amplitudes, γ0: 0.35, 0.4, and 0.55.

semble as a function of the total accumulated strain for
three typical strain amplitudes, γ0 = 0.35, 0.40, 0.55 rep-
resentative of the perfect elastic, reversible plastic, and
irreversible diffusive regimes respectively. Movies of typ-
ical systems are provided in the supplementary material.
At early times, plasticity is observed for all three am-
plitudes. At later times, the three curves behave qual-
itatively differently. After the seventh strain cycle, the
γ0 = 0.35 system reaches a fixed value of the plastic
strain after which all plastic activity ceases; this is the
perfect elastic regime. After eight cycles, the γ0 = 0.40
system locks into a period-1 limit cycle where the system
has plastic activity, but returns to an identical config-
uration every full cycle. This is the reversible plastic
regime. We will show evidence below for more com-
plicated cases with period greater than 1. Finally the
γ0 = 0.55 curve experiences a random amount of plas-
tic strain increase/decrease during the forward/backward
strain sweeps and never locks into a limit cycle. The sys-
tem never visits a previous configuration. This is the
irreversible diffusive regime.

To measure decorrelation, we define Vi,j to be the
ensemble-averaged variance of the incremental plastic
strain field defined between cycle i and j: Vi,j =
〈(εp(x, y; j)−εp(x, y; i))2〉x,y where εp(x, y; i) is the plastic
strain field at cycle i at site (x, y). In figure 1b), we show
Vi,i+1 corresponding to the decorrelation in a single cycle
for the same three systems as in figure 1a). For γ0 = 0.35,
Vi,i+1 vanishes at i = 7 indicating that the consecutive
εp fields become identical after 7 cycles. For γ0 = 0.40,
Vi,i+1 vanishes at i = 8 indicating that the consecutive
microscopic configurations become identical after 8 cy-
cles. For γ0 = 0.55, Vi,i+1 never vanishes and recedes to
a plateau, indicating the single-cycle decorrelation of εp.
One might be tempted to relate this single-cycle decorre-
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FIG. 2. a) Ensemble average of the decorrelation with respect
to the initial configuration Vi,0 vs cycle number i for different
maximum strain amplitude from lowest (bottom) to highest
(top) in the range from 0.35 to 0.7 with an increment of 0.01.
(Inset) schematic representation of the cycling protocol where
γ(t) is the current applied strain (which can be positive or

negative), γ0 is the cycling amplitude, and γacc =
∫ t
0
| dγ
dt
|dt

is the total accumulated strain. b) Ensemble average of the
single-cycle decorrelation Vi,i+1 for the same set of cycling
amplitudes as in a). c) Ensemble average of the single-half-
cycle (for forward going half-cycles) decorrelation Vi,i+1/2 for
the same set of cycling amplitudes as in a).

lation to the diffusivity of the system as in reference [4],
however, as we show below, these two quantities are not
simply related.

Figure 2a) shows Vi,0, the decorrelation with respect
to the initial configuration, versus the cycle number for
various amplitudes. These curves qualitatively resemble
creep-compliance curves in glassy materials [40–44]. All
systems, regardless of cycling amplitude, show at least
some initial decorrelation as initial plastic activity takes
the configuration away from the virgin quenched configu-
ration. However, the systems at the lowest cycling ampli-
tude quickly cease all plastic activity after a few cycles; a
perfectly elastic regime is reached, and Vi,0 saturates at
a constant value as the εp field becomes constant in time.
The reversible plastic systems at intermediate amplitude

show a period of rise before entering a limit cycle. Once in
the limit cycle, the Vi,0 value will oscillate among a small
set of values corresponding to the decorrelation of each
of the configurations in the limit cycle with respect to
the initial quenched state, but these small variations are
not visible on the scale of the figure. For the strain am-
plitudes above the transition in the irreversible, diffusive
regime, the decorrelation continues to grow indefinitely.

Figure 2b) and c) show Vi,i+1 and Vi,i+1/2, the full-
cycle and half-cycle decorrelation respectively for the
same cycling amplitudes as in a). We point out that using
single-cycle stroboscopic information alone does not al-
low one to distinguish between period-1 limit cycles and
the trivial case with no plasticity, while half-strobe in-
formation does allow for this distinction. For instance,
for the half-cycle strobe curves in c), we see that only
the two ensembles with smallest amplitude reach a triv-
ial state with no plastic activity in any members of the
ensemble. When we compare c) to b) we see that 3 more
amplitudes show zero full-cycle decorrelation in addition
to those two which showed zero decorrelation even for the
half-cycle strobe. What this tells us is that those 3 new
amplitudes have at least one member of the ensemble
which has reached a non-trivial limit cycle with period-1
as opposed to the two smallest amplitudes for which all
members of the ensemble reached a trivial limit. For this
reason, the transition identified in experiments [4] and
simulations [8] via single-full-cycle stroboscopic analysis
may not be the yielding transition we identify here where
one first sees long-time diffusion, but rather simply the
onset of limit cycles with period greater than 1. This
transition at the onset of limit cycles would show a dis-
crete jump in the one-cycle stroboscopic de-correlation
but would show zero long time diffusion on both sides
of the transition. Furthermore, we show, in the supple-
mentary material, how an analysis like that performed
in [8], with a limited number of total cycles and a one-
time definition of the diffusion constant without check-
ing for stationarity, could lead one to infer a jump in
D, while studying a larger number of cycles and check-
ing carefully for stationarity with a two-time definition
eliminating the effect of the transient makes the apparent
jump go away. We suspect this is one reason there is cur-
rently no consensus in the community about whether the
yielding transition under cyclic loading is first or second
order. At the same time, if one only studies correlation
between the current configuration and the initial config-
uration, e.g., via Vi,0 [5, 6], one would not be able to
differentiate between a pure elastic limit with no plastic
dissipation and reversible plastic limit cycles. Rather,
one would need to search explicitly for the limit cycles
by searching for identical configurations in the past as
first pointed out by Regev et. al. [7].

To define the number of cycles, N , required to reach a
limit cycle (of any period) we compare the terminal con-
figuration in each cycle to the 100 previous ones, so we
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FIG. 3. Left axis: ensemble-averaged number of cycles, N ,
required to converge to periodic (or trivial) limit cycle. Right
axis: diffusion coefficient, D, (defined in the text) for the εp
field. We omit the two points for which the variance of εp did
not reach a diffusive limit on the timescale for which we were
able to simulate (10, 000 strain cycles). The insets show log-
log plots for D and N vs. |γ0 − γc| where γc = 0.532 against
power laws of exponents −2.7 and 1.1, respectively .

would not detect cycles with periods greater than 100.
In this data set, we have not observed any cycles with
periods greater than 13, so it is reasonable to assume
that we have not missed any with periods greater than
100. Furthermore, we observe that V0,i is monotonically
increasing with i, ruling out high period limit cycles. [45]
In figure 3 we show, as a function of cycling amplitude,
both (left) the ensemble-averaged number of cycles, N ,
required to converge to periodic (or trivial) limit cycle
for systems below the yielding transition, and (right) a
diffusion coefficient, D, for the εp field for systems above
the yielding transition. For amplitudes of 0.52 and be-
low, we find that all the systems in our ensemble have
converged to a periodic limit cycle after 10, 000 strain
cycles, and the average time-to-convergence is well de-
fined. For amplitudes of 0.54 and above, all systems
have converged to a diffusive limit, and we can define
an effective diffusion coefficient, D, by simply taking:
D = V104,103/(104 − 103)γ0 [46]. We find that, for the
strain amplitudes and system sizes studied here, taking
data after 103 cycles is enough to give statistical station-
arity (see SI for details). For γ0 = 0.53, we observe that
a small number of our systems have converged to a limit
cycle but the majority have not. For a finite system size,
it is not clear whether it would be possible for an ensem-
ble at one strain amplitude to have co-existence between
limit cycles and diffusion, so in principle, it could be pos-
sible to define a diffusion coefficient for γ0 = 0.53 even
if some members of the ensemble have converged to a
limit cycle, as long as others continue to diffuse indefi-

FIG. 4. Probability of the observed periods, T , of terminal
limit cycles. Each column represents the probability of ob-
served periods at a particular amplitude for an ensemble of
20 systems. The color scale is logarithmic ranging from 0.05
to 1.0. White indicates no observations, or probability= 0,
of a particular period. The inset shows the average period.
Pure elastic behavior is treated as T = 0.

nitely. However, in practice we find that ∂ lnVi,103/∂ ln i
has not yet reached a constant plateau by i = 104, so we
choose to omit γ0 = 0.53 from the plot. In the insets,
we show that N and 1/D diverge at γc = 0.532 with
exponents 2.7 and 1.1 respectively.

In figure 4, we plot histograms of the observed pe-
riods of the limit cycles at various cycling amplitudes
below the yielding transition. Systems which eventually
exhibit perfectly elastic behavior with no plasticity are
considered to have period 0. For amplitudes of 0.36 and
below, all systems have period zero, i.e. all plasticity
eventually vanishes. At an amplitude of 0.37, 19 out of
20 systems converge to a period-1 limit cycle while one
system eventually reaches a perfect elastic limit. At an
amplitude of 0.40, we observe our first limit cycle with
period greater than 1. As the amplitude increases toward
yielding, the average period increases. In the inset, we
plot the ensemble-averaged period vs. cycling amplitude
which shows the tendency to increase.

In summary, we have found three regimes (elastic,
reversible plastic, diffusive) in our cyclicly sheared au-
tomaton model which are consistent with previous ex-
periments [1–3] and particle-based simulations [5–7]. We
have found power laws on approach to γc for: i) the num-
ber of cycles, N , required to reach a limit cycle below γc
and ii) the effective diffusion constant, D, above γc. We
also reported the distribution of periods of the limit cy-
cles below γc and showed that the average period grew on
approach to γc. These results were enabled by the high
computational efficiency of the automaton allowing us to
reach 104 cycles which is two orders of magnitude beyond
what can currently be obtained in experiment or parti-
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cle simulation. We hope our results will stimulate future
work on experiments and particle-based simulations to
address the issue of the periods of the limit cycles and
the power-law form of D and N .

There are many open questions and routes for future
work. i) A more detailed study of the critical region
should be performed with a finer sweep of strain ampli-
tudes along with a finite size scaling analysis of N and
D along with larger ensembles to understand the distri-
bution of limit-cycle periods. ii) The effective diffusion
coefficient studied here is for the diffusion of the plastic
strain rather than the diffusion of the displacement as is
conventionally studied in experiments and particle-based
simulations. Some of us have already shown that there is
a non-trivial relationship between strain-based statistics
and displacement-based statistics in steady shear [47–
49], and one would expect a similar non-trivial relation-
ship here in the cyclic case. iii) We have observed that
even in the yielded-diffusive regime a significant frac-
tion of the plasticity in a forward sweep reverses itself
during the subsequent backward sweep; this is remark-
able and deserves further study. iv) The issue of sam-
ple preparation recently raised in Ref. [50, 51] is, per-
haps, most important of all, as it is well known that
sample age/preparation/quench protocol is crucial even
in steady shear [52–57] , and therefore it will be impor-
tant to study systems which have been prepared with a
gentler quench or annealed or subjected to small (sub-
yield) cyclic strain before the main cycling. It is only
through these more complex protocols that we will dis-
cover how the material encodes memory of its history via
its state[51, 58, 59].
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