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The physics above and below the yield stress is unified by a simple model for viscoplasticity that
accounts for the nonlinear rheology of multiple yield stress fluids. The model has a rate-dependent
relaxation time, allows for plastic deformation below the yield stress, and indicates that rapid
elastic deformation aids yielding. A range of commonly-observed rheological behaviors are predicted,
including the smooth overshoot in the loss modulus, and the recently-discovered contributions from
recoverable and unrecoverable strains in amplitude sweeps.

Yield stress fluids change from being viscoelastic solids,
where deformations are recoverable, to deforming plasti-
cally, where deformation is unrecoverable, as an applied
load is increased beyond a threshold. Yielding is most
often associated with glasses, gels, and jammed systems.
Soft materials with structures as diverse as foams, micro-
gel suspensions, emulsions, pastes, and granular suspen-
sions [1–13], as well as polymer networks, colloidal gels,
capillary suspensions, and magnetorheological fluids [14–
22] have all been shown to yield.

Despite the fact that yield stress fluids (YSFs) are
made from various microstructural elements, their bulk
rheology displays many similarities, suggesting that a
common continuum description is possible.

A conceptually simple illustration of yielding behavior
is elicited by the application of a constant shear rate to a
previously at-rest YSF. An elastic behavior is observed at
small stresses and strains and is followed by yielding and
stable flow after a threshold stress or strain is exceeded
[23–25].

When a range of constant stresses are applied, the vis-
cosity of YSFs bifurcates about the yield stress, with the
viscosity diverging for stresses below the yielding condi-
tion and remaining finite and stable above it. This be-
havior has been shown to manifest as avalanche behavior
during inclined plane tests [26–31].

Under dynamic testing conditions achieved by oscillat-
ing the applied strain, the response of YSFs is more com-
plex. Under small amplitude oscillatory shear (SAOS),
the dynamic moduli, which reflect energy storage and
dissipation, are nearly independent of frequency. As the
strain amplitude is increased, a smooth overshoot is ob-
served in the loss modulus, followed at larger amplitudes
by a decrease in both moduli [32–37]. The overshoot
in the loss modulus has recently been shown to be due
to a transition in how strain is acquired, from predom-
inantly recoverable (elastic) at small amplitudes to pre-
dominantly unrecoverable (plastic) at larger amplitudes
[38], without a clear indication of a single yield point
[39, 40]. The range of behaviors exhibited under strain-
controlled conditions has made determination of a single
well-defined yield point difficult [41].

Experiments that resolve structural-level information,

such as diffusing-wave spectroscopy [42], rheo-microscopy
[43], ultrasonic speckle velocimetry [44–47], and rheo-
scattering [48, 49], have indicated that yielding is a grad-
ual behavior, and that irreversible rearrangements take
place below the yield stress [50–56].

Yielding is typically modeled at the continuum level in
terms of a critical stress, below which it is assumed that
no plastic flow occurs. Prior to yielding, YSFs have been
described as being perfectly rigid, elastic, or viscoelastic
solids [57]. In the plastic regime, the stress is typically
described as a combination of a yield stress term and
some flow condition, which typically takes the form of
a generalized Newtonian flow [4, 58–65]. This has led
to discontinuous piece-wise descriptions of YSF rheology
[57, 66, 67], referred to as the Oldroyd-Prager formula-
tion [41, 66, 68, 69], in which the pre-yielded solid behav-
ior is described by different physics to the plastic state.
The discontinuity of the piece-wise description is often
discarded in computational studies of flows in complex
geometries, in favor of regularized models that treat the
behavior of YSFs as purely viscous [70–73].

In this Letter, we unify the rheological physics above
and below the yield stress by constructing a continuum
model of YSF rheology that avoids the piece-wise nature
of the Oldroyd-Prager formulation. We show that its
predictions account for experimental results from a range
of rheological protocols on a model YSF.

The rheology of soft materials in general, and YSFs in
particular, can be decomposed into a sum of recoverable
and unrecoverable shear strain and rate components [38,
74–77],

γ(t) = γrec(t) + γunrec(t) (1)

γ̇(t) = γ̇rec(t) + γ̇unrec(t), (2)

where γrec and γunrec are the recoverable and unrecov-
erable shear strains, and γ̇rec and γ̇unrec are their rates.
The recoverable component is related to elastic processes,
while the unrecoverable component is related to the plas-
tic behavior [74, 75, 78, 79]. We use the concepts of strain
and rate decomposition to build our model.

In the linear viscoelastic regime, when YSFs are in
their unyielded solid states, the dynamic moduli, G′(ω)
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and G′′(ω), are observed to be weakly or negligibly de-
pendent on the frequency [35, 37, 80], with G′(ω) >>
G′′(ω). We therefore prescribe that the recoverable com-
ponent of the model be a viscoelastic solid element with
an elastic modulus G = G′(ω) and a structural viscosity
ηs = G′′(ω)/ω.

Steady flow experiments at long times probe the unre-
coverable, or plastic acquisition of strain. In this letter,
we use a Herschel-Bulkley representation of the steady-
shear viscosity [59], which includes a yield stress, σy, a
consistency index, k, and an exponent, n, such that the
plastic viscosity ηp(γ̇) = σy/|γ̇|+k|γ̇|n−1. Other variants
of the steady shear behavior of YSFs could also be used
[61].

We construct the model so that the plastic viscosity,
ηp, is dependent on the total shear rate, which includes
the rate at which strain is acquired recoverably, γ̇(t) =
γ̇rec(t) + γ̇unrec(t). The dependence is prescribed by the
steady-shear behavior. The strong shear-rate dependence
of the plastic viscosity means that plastic deformation
is assisted by the rate at which elastic deformation is
acquired and also that plastic flow can occur transiently
below the yield stress, as observed experimentally [42–
49].

The complete model is

σ + λ(γ̇)σ̇ =

(
σy
|γ̇|

+ k|γ̇|n−1
)(

γ̇ +
ηs
G
γ̈
)
, (3)

where λ(γ̇) is the rate-dependent relaxation time that is
a consequence of combining the recoverable and unrecov-
erable components,

λ(γ̇) =

σy

|γ̇| + k|γ̇|n−1 + ηs

G
. (4)

A rate-dependent relaxation time was recently observed
in the yielding behavior of amorphous solid colloidal
monolayers [81]. For simplicity, we have only shown
here the evolution of the shear component of the extra
stress tensor. A full tensorial version of the model (see
Supplemental Material [URL] for details, which includes
Ref. [82]), also includes an expression for the evolution
of the first normal stress difference, which predicts the
quadratic dependence on the shear stress that was ob-
served recently [83]. The model predicts no second nor-
mal stress difference.

This model describes the physical behavior above and
below the yield stress in a single equation, in direct con-
trast to the Oldroyd-Prager formulation, and hence uni-
fies the physics that governs the yielded and unyielded
behavior. While a single steady-state yield stress is as-
sumed, the process of yielding is accounted for by the
rate-dependent relaxation time λ(γ̇), and can therefore
be thought of as a viscoelastic process. The model pa-
rameters are obtained from two steady-state tests, but
account for a wide range of transient behaviors, as we
will show.

We compare the predictions of the model, which were
obtained numerically using MATLAB, to experimental
rheological data collected from a simple yield stress fluid:
a polymer microgel - Carbopol 980, 1 wt% (see Supple-
mental Material [URL] for material preparation, which
includes Ref. [40]). We also show results for two other
YSFs in the SI: a biopolymer suspension - Xanthan gum,
4 wt% (see Supplemental Material [URL] for material
preparation, which includes Ref. [32]); and a dense
(glassy) colloidal suspension - concentrated Ludox TM-
50, 42 vol% (see Supplemental Material [URL] for mate-
rial preparation, which includes Ref. [84]). These materi-
als are known to display thixotropy and aging [85–88] and
yet the simple model, which does not attempt to describe
either effect, captures the main features of their yielding
behavior. The rheometrical geometries used were cho-
sen to replicate existing works in the literature [38] (see
Supplemental Material [URL] for details).

All measurements were made with an Anton Paar
Modular Compact Rheometer (MCR) 702, operating
in single-drive mode. This instrument’s electronically-
commutated synchronous motor allows for experiments
to be carried out under stress-controlled and strain-
controlled modes, with rapid switching between the two
over intervals of a few milliseconds.

Linear-regime frequency sweeps were performed at a
strain amplitude of γ0=0.00316 strain units to obtain the
model parameters related to recoverable components of
the model, with G and ηs determined from the dynamic
moduli at ω = 1 rad/s with G = G′ and ηs = G′′/ω.
The steady shear flow curve is fit by the Herschel-Bulkley
model. Model parameter values are listed in the Supple-
mental Material [URL].

Oscillatory shear tests were performed at an angular
frequency ω = 1 rad/s, over the strain amplitude range
0.006 ≤ γ0 ≤ 10 to create an amplitude sweep. Data
from additional frequencies is shown in the Supplemen-
tal Material [URL]. Measurements were made at steady
alternance, once all initial transience had decayed. An it-
erative constrained recovery procedure was employed at
40 distinct evenly-spaced instants during an oscillation
(see [38, 78] for a detailed experimental protocol) to ob-
tain recoverable and unrecoverable components at each
amplitude.

A comparison of the experimental data and model pre-
dictions for amplitude sweeps are shown in fig. 1(a) for
Carbopol 980. A smooth overshoot in the loss modu-
lus is observed at intermediate amplitudes, followed by
the decrease of both moduli at the largest amplitudes.
The smooth transitions in the experimentally-determined
moduli are accurately captured by the model through
the rate-dependent relaxation time λ(γ̇). At small strain
amplitudes and moderate frequencies, where the applied
shear rate remains low, the relaxation time is always
longer than the period of oscillation, and the response
remains solid-like. As the applied shear rate increases
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FIG. 1. (a) The dynamic moduli, G′(γ0) and G′′(γ0), as func-
tions of strain amplitude for Carbopol. (b) Components of the
loss modulus, G′′solid(γ0) and G′′fluid(γ0) corresponding to dis-
sipation from recoverable and unrecoverable strains. Symbols
are experimental data, lines are model predictions. Model pa-
rameters are listed in the SI.

at larger amplitudes, the relaxation time decreases, and
more fluid-like behavior is elicited.

The dynamic moduli physically represent the average
energy stored and dissipated per cycle [79]. Energy dis-
sipation can be associated with the rate at which recov-
erable elastic strain is acquired,

G′′solid(ω, γ0) = 2(γ̇rec(t)σ(t))avg/ωγ
2
0 , (5)

as well as the rate at which unrecoverable plastic strain
is acquired,

G′′fluid(ω, γ0) = 2(γ̇unrec(t)σ(t))avg/ωγ
2
0 . (6)

While G′′(ω, γ0) includes contributions from both recov-
erable and unrecoverable modes, the overshoot is due to
unrecoverable modes only [38]. We show in fig. 1(b)
that the predictions of the model are very close to
the experimentally-determined energy dissipation com-
ponents [38], G′′solid(ω, γ0) and G′′fluid(ω, γ0), for Car-
bopol 980. By contrast, models that invoke the Oldroyd-
Prager formulation [41, 66, 69] predict no G′′fluid(ω, γ0)
contributions below the yield stress [38], and predict
abrupt changes in G′′(ω, γ0) when the yield stress is ex-
ceeded [57].

The non-zero values of G′′fluid(ω, γ0) across the full
range of amplitudes shown in fig. 1 indicate that un-
recoverable plastic deformation is acquired even when
the stress is below the yield stress. The model allows
for this by having the plastic viscosity be dependent on
the total shear rate, which includes elastic deformations,
ηp(γ̇) = σy/| (γ̇rec + γ̇unrec) | + k| (γ̇rec + γ̇unrec) |n−1.
Rapid elastic deformation (large γ̇rec) therefore decreases
the viscosity of the unrecoverable component, ηp, which
results in plastic flow at stresses lower than the steady
state yield stress.

While the model captures the behavior of the dynamic
moduli, which represent an average response over a pe-
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FIG. 2. Comparison of the elastic Lissajous curves from the
amplitude sweep at ω = 1 rad/s for Carbopol 980 between
the experiments (a) and the model (b). Model parameters
are listed in the SI.

riod, as observed in fig. 1, a stricter test of the predic-
tions can be made by examining the transient responses.
We achieve this by comparing the Lissajous curves, in
which the stress is plotted parametrically against the to-
tal strain, in fig. 2. The model captures all of the features
observed experimentally, including the overall shapes and
the instantaneous slopes of the curves in different regions.

The transient response of the material at larger strain
amplitudes can be explained as following a continuous
and periodic sequence of physical processes that is made
clear by examination of the instantaneous Deborah num-
ber [89]. Solid-like and fluid-like behaviors are indicated
by values of the Deborah number that are greater than
or smaller than unity, respectively. We define the Debo-
rah number for oscillatory shearing as De = tmat/tobs =
ωλ(γ̇), where tmat and tobs are material and observation
times, and λ(γ̇) is the rate-dependent relaxation time
defined by eqn. 4. An oscillating relaxation time was
recently observed during LAOS experiments on amor-
phous colloidal monolayers [81]. In our experiments and
those in [81], at values of the (total) strain around zero,
the shear rate is largest, the relaxation time is shortest,
De < 1, and fluid-like behavior is observed. At the strain
extrema, when the shear rate is zero, the relaxation time
is infinite, De = ∞, and solid-like behavior is observed.
Between these extremes, the model displays smooth and
continuous yielding and unyielding as the relaxation time
drops below or increases beyond the period of oscillation.

The response of YSFs has been studied under vari-
ety of different protocols, and it is important to investi-
gate the ability of any model to predict behaviors seen
in a wide range of experiments. The comparison of the
model’s predictions and experimental data for steady
shear startup and creep experiments on our model YSF
are shown in fig. 3 (a) and fig. 3 (b).

The steady shear startup experiments show elastic,
solid-like responses at early times across the range of im-
posed shear rates. At long times, the sample has yielded
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FIG. 3. (a) Comparison of experiment (symbols) and model
(lines) results for steady shear startup tests at four applied
shear rates. The inset shows the variation of shear stress with
strain. (b) Comparison of experiment (symbols) and model
(lines) results for steady creep tests at four applied stress
magnitudes. The inset shows the evolution of the viscosity
(σ/γ̇(t)). Model parameters are listed in the SI.

and flows plastically, with the stress taking the steady
state value prescribed by the flow curve, σ(γ̇) = σy+kγ̇n.
The model predicts the same response, and provides a
clear physical explanation: the strain is acquired recov-
erably at the early times, while the unrecoverable com-
ponent dominates at long times. The relevant timescale
is set by the relaxation time, which is dictated by the
applied shear rate. The model response for steady shear
startup, where γ̇ = constant and γ̈ = 0, can be obtained
from eqns. 3 and 4 to show the stress is a function of
strain and rate only,

σ(γ̇, γ) = (σy + k|γ̇|n)

(
1− exp

(
− Gγ

σy + k|γ̇|n + ηs|γ̇|

))
.

(7)
At low shear rates, where σy >> k|γ̇|n + ηs|γ̇|, the small
strain response is σ = Gγ, showing that the stress is
elastically proportional to the strain. The evolution of
stress with strain is displayed in the inset in fig. 3(a).

A yield strain, γy, which acts as a threshold similar
to the yield stress is often measured in studies of YSFs
[39, 41, 90]. As seen from eqn. 7, the model predicts an
apparent yield strain γy = (σy + k|γ̇|n + ηs|γ̇|) /G that
depends on the rate when σy . k|γ̇|n + ηs|γ̇| but is in-
dependent of the shear rate at low rates, with a value of
γy = σy/G.

We again make use of the Deborah number, De =
λ(γ̇)/tobs, to describe the observed physics. By impos-
ing a fixed shear rate, we are setting the relaxation time
according to eqn. 4. At times shorter than this relax-
ation time, when De > 1, a solid-like elastic response
is elicited. Fluid-like behavior is observed when the ob-
servation time exceeds the relaxation time. In between,
smooth and continuous yielding occurs as the observation
time exceeds the relaxation time.

In constant stress experiments on YSFs, the viscosity
at long times has been observed to bifurcate about the

yield stress with avalanches observed for stresses larger
than the yield stress [26]. For imposed stresses below
the yield stress, the viscosity continues to increase until
the flow is halted altogether, while the viscosity remains
finite for imposed stresses above the yield stress. A com-
parison of creep experiments and model predictions is
shown in fig. 3(b) for stresses above and below the yield
stress. The creep response of the model can be deter-
mined by substituting σ̇ = 0 into eqn. 3:

γ̈ =

(
σ

σy + k|γ̇|n
− 1

)
Gγ̇

ηs
. (8)

For stresses above the yield stress, the strain rate will
initially increase exponentially until reaching the steady-
state value. Avalanches are therefore predicted. The
model clearly captures the viscosity bifurcation shown
in the inset of fig. 3(b). In contrast to steady shear
startup experiments, where the shear rate and the re-
laxation time are kept constant, creep experiments allow
for the relaxation time to vary as the experiment pro-
gresses. This can result in a non-monotonic evolution
of the Deborah number. At imposed stresses below the
yield stress, the relaxation time continuously increases
with time, ensuring De > 1 at all times. For imposed
stresses larger than the yield stress, the relaxation time
remains short, De < 1, and the system flows stably at
long times.

We have unified the rheological physics above and be-
low the yield stress by constructing a continuum vis-
coelastic model of yield stress fluid rheology that ac-
counts for the nonlinear rheology of a model yield stress
fluid. The model is formulated so that the unrecover-
able plastic viscosity is dependent on the total shear rate,
which includes the rate at which strain is acquired recov-
erably. Plastic flow is therefore aided by the rate at which
elastic deformation is acquired, and is able to occur tran-
siently at stresses below the yield stress. At steady state,
however, the elastic deformation saturates, and the total
strain rate becomes equal to the unrecoverable rate. The
stress therefore needs to be maintained above the yield
stress for stable plastic flow to be established, which can
be initiated below the yield stress.

While a single yield stress is assumed, the process
of yielding is accounted for by a rate-dependent relax-
ation time, and can therefore be thought of as a vis-
coelastic process. This simple model uses parameters
obtained from two steady-state tests, but accounts for a
wide range of transient behaviors including the overshoot
in the loss modulus observed in amplitude sweeps, the
transient large amplitude oscillatory shear responses, the
steady-shear start-up, and transient creep and avalanche
behaviors. The simplicity of the model also makes it a
good candidate for future computational studies of YSF
rheology in complex geometries.
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Schröder-Turk, Biophys. J. 95, 6072–6080 (2008).
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