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Transport through edge channels is responsible for conduction in quantum Hall (QH) phases. Ro-
bust quantized values of charge and thermal conductances dictated by bulk topology appear when
equilibration processes become dominant. We report on measurements of electrical and thermal
conductances of integer and fractional QH phases, realized in hexagonal boron nitride encapsulated
graphite-gated bilayer graphene (BLG) devices for both electron and hole doped sides with differ-
ent valley and orbital symmetries. Remarkably, for complex edges at filling factors ν = 5

3
and 8

3
,

closely related to the paradigmatic hole-conjugate ν = 2
3
phase, we find quantized thermal conduc-

tance whose values (3κ0T respectively 4κ0T , where κ0T is the thermal conductance quantum) are
markedly inconsistent with the values dictated by topology (1κ0T and 2κ0T , respectively). The
measured thermal conductance values remain insensitive to different symmetries suggesting its uni-
versal nature. Our findings are supported by a theoretical analysis, which indicates that whereas
electrical equilibration at the edge is established over a finite length scale, the thermal equilibra-
tion length diverges for strong electrostatic interaction. Our results elucidate the subtle nature of
crossover from coherent, mesoscopic to topology-dominated transport.

According to the bulk-edge correspondence princi-
ple [1–3], certain characteristics of gapless edge modes are
constrained by the topological order in the gapped bulk.
This turns out to be a subtle issue for hole-conjugate
fractional quantum Hall (FQH) phases, whose edges are
complex, i.e., hosting counter-propagating modes: nd
moving downstream (the direction defined by semiclas-
sical skipping orbits at the edge) and nu moving up-
stream (opposite to downstream). The quantized two-
terminal electrical conductance for these states has been
predicted to be G = ν e

2

h , while the thermal conductance
is GQ = |nd − nu|κ0T . Here, ν is the bulk Landau-
level filling factor, κ0 =

π2k2B
3h , kB is the Boltzmann con-

stant, h is the Planck constant, and T is the tempera-
ture [4–6]. Observing the quantization of G and GQ re-
quires full equilibration of the counter-propagating edge
modes [7, 8].

The paradigmatic example of a complex edge occurs
at ν = 2

3 and consists of counter-propagating 1 (down-
stream) and 1

3 (upstream) modes [9]. In the presence of
disorder and strong electrostatic inter-mode interaction
(parametrized by a single parameter ∆→ 1), these bare
modes renormalize to one ballistic downstream charge
mode with G = 2

3
e2

h and one ballistic upstream neu-
tral mode only at the low-temperature (T → 0) and
infinite-edge-length (L → ∞) limit [10]. However, for

finite length and at finite temperature, a robust G = 2
3
e2

h
requires full equilibration among the bare modes lead-
ing to incoherent transport [7, 8, 11]. In the opposite
limit of coherent, non-equilibrated edge transport, one
finds [7] G = 4

3
e2

h . Experimental observation of the
crossover from G = 4

3
e2

h (entirely non-equilibrated) to
G = 2

3
e2

h (fully equilibrated) has so sofar been reported
only in a GaAs/AlGaAs based device [12]. The cor-
responding crossover length scale `Ceq defines the elec-
trical equilibration length. Likewise, the thermal equi-
libration length `Heq defines the crossover from a ther-
mally non-equilibrated edge with thermal conductance
GQ = (nd +nu)κ0T to the topologically constrained and
equilibrated thermal conductance GQ = |nd − nu|κ0T .
For ν = 2

3 (where nd = nu = 1) and its cousin states,
ν = 5

3 and 8
3 , this topology-dictated GQ/κ0T is 0, 1,

and 2, respectively. For ν = 2
3 , the zero value is ex-

pected with increasing L as GQ ∼ `Heq/L, signalling heat
diffusion [7, 8]. To date, experimental studies of ther-
mal transport on complex FQH edges have been per-
formed only in GaAs/AlGaAs based structures [5, 6],
including ν = 2

3 , and yielded values of GQ consistent
with the equilibrated regime. However, similar to the
electrical conductance, an experimental manifestation of
the dichotomy between equilibrated and non-equilibrated
values of heat conductance on complex FQH edges is
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Figure 1. Equilibration, Device schematic and QH response. (a) Left panel: voltage (top) and temperature (bottom)
profile in colours with changing intensity along the edge for L� `Ceq; `Heq. In this limit, G is 2

3
e2

h
and GQ goes to zero diffusively.

Right panel: voltage and temperature profile in limit `Ceq � L � `Heq realized at M−→ 1. While G is still 2
3

e2

h
, one has now

GQ = 2κ0T . Solid and dashed lines correspond to the downstream and upstream eigenmodes, respectively. (b) Schematic of
device with measurement setup. The device is set in the integer QH regime at ν = 1. An injected current IS (black line) is
absorbed in the floating reservoir (red contact) and terminates into two cold grounds. The electrical and thermal conductances
are measured at low frequency (228 Hz) and high frequency (∼ 758kHz with a LCR resonant circuit), respectively. (c) The
blue line is the GS (IS/VS) as a function of VBG at B = 10T for the D1 device. The red and black lines are the measured
resistances (right y axis) at the T and R contacts, respectively. The robust fractional plateaus at 5

3
e2

h
, 7

3
e2

h
, 8

3
e2

h
with weaker

plateau ∼ 4
3

e2

h
clearly visible. (d) The conductance measured in two probe (black), three probe (blue) and four probe (red)

configurations are plotted for the D3 device. The inset show the contact positions. The first number in the subscript of I
corresponds to current fed contact and the remaining numbers label grounded contacts. The same notation is used for voltage
(V ) measurements.

missing. In this context, a different system like bilayer
graphene (BLG) with more degrees of freedom (valley
and orbital) together with unprecedented universal edge
profile [13, 14] due to atomically sharp confining potential
are ideal platforms to study the thermal transport. For
electron-like FQH edges in this system (with only down-
stream modes), topology dictated and universal thermal
conductance values were found [15], but no measurements
have so far been performed for complex hole-conjugate
FQH edges.

Here, we report measurements of the thermal and

electric conductance of a variety of QH phases, re-
alized in hBN encapsulated graphite gated BLG de-
vices, for both electron and hole doping, using sensi-
tive noise thermometry [5, 6, 15, 16], where all the
symmetries (spin, valley and orbitals) are broken [17–
19]. For integer QH (ν = 1, 2, 3, 4) and electron-
like FQH states (ν = 4

3 ,
7
3 ) we obtain the expected

values for G (1 e
2

h , 2
e2

h , 3
e2

h , 4
e2

h ,
4
3
e2

h ,
7
3
e2

h , respectively)
and GQ (within accuracy of 5%, 1κ0T, 2κ0T, 3κ0T ,
4κ0T, 2κ0T, 3κ0T , respectively). For the hole-conjugate
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phases ν = 5
3 and 8

3 , G shows expected values ( 5
3
e2

h and
8
3
e2

h , respectively), corresponding to electrically equili-
brated edges. At the same time, and most remarkably,
GQ is found to be 3κ0T and 4κ0T , respectively, cor-
responding to thermally non-equilibrated edges. Our
results of thermal conductance on FQH states for dif-
ferent valleys and orbitals further suggest a univer-
sality; a topology dictated GQ for electron-like FQH
states ( 4

3 ,
7
3 ) but entirely non-equilibrated GQ for hole-

conjugate FQH states ( 5
3 ,

8
3 ). To explain the striking con-

trast between electric and thermal equilibration for hole-
conjugate FQH states, we present a theoretical analysis
of edge equilibration in the strong interaction limit [20].
In the limit of ∆ → 1 we find that, while `Ceq remains
finite, `Heq diverges as 1/(∆ − 1), indicating vanishing
thermal equilibration. This gives rise to a new regime
`Ceq � L � `Heq observed here; in Fig. 1a we contrast it
to the regime of fully equilibrated transport, `Ceq; `Heq � L.

For the thermal conductance measurement, we used
two bottom graphite gated devices (D1 and D2), where
the graphene was encapsulated between two hBN layers,
each with thickness of ∼ 20 nm. The device fabrication
is described in the Supplemental Material (SM) ([19]).
Similar to our previous work [15], our devices consist of
a floating metallic reservoir in the middle, connected to
edge channels on both sides, as shown schematically in
Fig. 1(b) [15]. The distances from the floating contact
to the transverse contacts and cold grounds in Fig. 1(b)
were ∼ 3µm (4µm) and ∼ 6µm (8µm) for D1 (D2), re-
spectively (see [19] for optical images). The electrical
conductance was measured using standard lock-in tech-
nique whereas the thermal conductance was measured
with noise thermometry [5, 6, 15, 16] ([19]). In Fig. 1(c),
the blue curve represents GS (IS/VS) measured at the
source contact (S) for the D1 device as a function of the
bottom graphite gate voltage (VBG).

Plateaus appear at ν = 5
3 ,

7
3 and 8

3 along with the inte-
ger QH plateaus at ν = 1, 2, and 3. Similarly, for the D2
device, plateaus appear at ν = 4

3 ,
7
3 and 8

3 ([19] Fig. S6).
In Fig. 1c, the red (black) curve shows the measured re-
sistance RT = VT /IS (RR = VR/IS) at the T (R) contact
along the transmitted (reflected) path from the floating
contact (D1). Measured resistances along these paths
are exactly half of the resistance measured at the S con-
tact, which strongly suggest that the injected current is
equally divided from the floating contact to both sides of
the graphene channel. The resistance values at the S, R
and T contacts for ν = 5

3 and 8
3 are consistent with the

charge equilibration of the bare modes along the propaga-
tion length. To further confirm the charge equilibration,
we measure the conventional two-probe electrical conduc-
tance of ν = 2

3 in another device (D3 with L ∼ 5− 6µm)
with three-probe and four-probe configurations. In Fig.
1d, the quantized value is fixed at ∼ 39kΩ. By contrast,
if there was no charge equilibration, the resistance values

obtained using the Landauer Büttiker model [21] for our
devices will be quite different [19].

In order to measure the thermal conductance, a DC
current (IS), injected at the S contact (Fig. 1b), flows
towards the floating reservoir and the outgoing current
splits into two equal parts to the cold grounds. The power
dissipation at the floating reservoir due to joule heating
is JQ =

I2S
4νG0

(SM [19]), [15], and thus the electrons in
the floating reservoir will be heated to a new steady state
temperature (TM ), determined by the following heat bal-
ance relation [5, 6, 15, 16, 22, 23]

JQ = JeQ(TM , T0) + Je−phQ (TM , T0) (1)

JQ = 0.5Nκ0(T 2
M − T 2

0 ) + Je−phQ (TM , T0) (2)

Here, JeQ(TM , T0) is the electronic contribution of the
heat current via N chiral edge modes, and Je−phQ (TM , T0)
is the heat loss via electron-phonon coupling. The TM
is obtained by measuring the excess thermal noise;
SI = νkB(TM − T0)G0 [5, 6, 15, 16, 22, 24–26], along
the outgoing edge channels as shown in Fig. 1b. Fig.
2a shows the measured excess thermal noise SI as a
function of current IS for ν = 1 (red), 2 (black), and
3 (blue) (D1). The noise and current axes of Fig. 2a
are converted to JQ and TM , and plotted in Fig. 2b.
To extract GQ for each filling factor, we have plotted
JQ as a function of T 2

M − T 2
0 in Fig. 2c. The solid

circles represent the experimental data, while the solid
lines are the linear fits of GQ with 0.99, 1.96, and
3.01κ0T for ν =1, 2 and 3, respectively. Similarly, for
device D2, GQ was found to be ∼ 0.99, 2.05, 3.04 and
3.96κ0T for ν =1, 2, 3 and 4, respectively ([19] Fig.
S7), which shows an excellent match with its expected
theoretical values. Note that Je−ph was negligible up to
TM ∼ 60mK and also, heat Coulomb blockade [27] was
expected to be absent for our graphite gated devices [19].

Fig. 3a shows SI as a function of IS for ν = 5
3 (red),

7
3 (black) and 8

3 (blue) for D1. Experimental curves for
7/3 and 8/3 are shifted vertically by 1×10−29A2/Hz and
3×10−29A2/Hz for clarity. From these raw data, the TM
was extracted as a function of JQ [19]. In Fig. 3b, JQ is
plotted as a function of T 2

M−T 2
0 as shown by the coloured

circles, and the solid lines are the theoretical curves for
GQ = 1κ0T (magenta), 2κ0T (brown), 3κ0T (red) and
4κ0T (blue). The linear fittings to the measured data in
Fig. 3b gives GQ ∼ 3.03, 2.96, and 4.03κ0T for 5

3 ,
7
3 and

8
3 , respectively. Similarly, GQ ∼ 1.96, 3.01, and 3.94κ0T
for 4

3 ,
7
3 and 8

3 , respectively, for device D2 ([19] Fig. S8).
For the particle-like states 4

3 and 7
3 , the measured value of

GQ is in excellent agreement with the expected theoret-
ical values. However, for the hole-like FQH states 5

3 and
8
3 , the measuredGQ strikingly matches with (nd+nu)κ0T
rather than the expected topological quantum number of
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Figure 2. Thermal conductance for integer QH states. (a) Excess thermal noise SI as a function of source current IS at
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|nd−nu|κ0T = 1κ0T , and 2κ0T , respectively. In Fig. 3c,
we plot λ = ∆JQ/(0.5κ0) as a function of T 2

M for two dif-
ferent configurations of ∆ν = 5

3−1 (red) and 8
3−2 (black)

to extract the contribution of the partially filled Landau
level with ν = 2

3 out of the data for 5
3 and 8

3 . Linear fits
give 2.02κ0T and 2.06κ0T , respectively, forGQ of the ν =
2
3 state. For the D2 device, the fit yields 1.99κ0T ([19]
Fig. S8). It is worth to mention here that the thermal
conductance of 7

3 and 8
3 states observed in hole doped

(device D1) and in electron doped (device D2) regime
are the same, irrespective of the different orbital nature
of their wave-functions, which is N=1(0) in hole(electron)
doped regime[17–19]. In fact, the extracted thermal con-
ductance of 2

3 like state from 5
3 and 8

3 (Fig. 3(c)) is also
the same, irrespective of the different orbital nature of
wave-functions, which is N=1(0) for 5

3 (
8
3 ). This estab-

lishes the universality of our results.

The observed values of the thermal conductance for
ν = 5

3 and 8
3 imply essentially vanishing thermal equili-

bration between counter-propagating modes. To explain
this, we consider a model of counter-propagating 1 and 1

3
modes in the uppermost Landau level. In the presence of
inter-channel interactions, this level consists of two emer-
gent, counter-propagating eigenmodes. Their dimension-
less charge conductances are g± = (∆ ± 1)/3. Impor-
tantly, their dimensionless heat conductances are unity,
independent of ∆. Tunneling facilitated by random dis-
order leads to equilibration between these modes. Calcu-
lating the charge and heat tunneling currents, we derive
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thermal (`Heq) and charge (`Ceq) equilibration lengths [19];

`H/Ceq ∝ CH/C(∆)T 2−2∆, CH(∆) ∼ 1

∆− 1
, CC(∆) ∼ 1,

(3)
where we have displayed only the dependence on the
temperature T and ∆. Our key observation is that the
coefficient CH(∆) diverges for ∆ → 1, implying a very
large `Heq. This happens because the tunneling current
between eigenmodes is proportional to ∆−1. The region
∆ close to 1 corresponds to very strong interactions.
We argue that the sharp confining potential of our
graphene devices, where the screening graphite gate is
separated from the electron gas of graphene by a thin
insulating hBN layer (∼ 10 − 20 nm) [13, 14, 28, 29],
favors this regime in contrast to the shallow confining
potential in GaAs/AlGaAs devices [5, 6]. For `Ceq,
the smallness of the tunneling current is compensated
by the smallness of the charge conductance of one of
the eigenmodes (g−). The eigenmode conductances
determine the effect of tunneled charge on the local
voltages. Tunneling of a finite charge to the "almost
neutral" chiral mode results in an enhanced effect on the
local voltage of the mode, facilitating easier equilibration
of the local chemical potentials. Technically, this will
compensate the ∆ − 1 factor of the tunneling current,
leading to CC(∆) ∼ 1 (the same result for `Ceq is also
obtained [30] by explicitly considering electrostatics of
fractionalization-renormalized tunneling.) As a result,
for ∆ close to 1, `Ceq � `Heq, which creates a broad regime
of system sizes `Ceq � L� `Heq thereby explaining the ex-
perimental observations of efficient charge equilibration
but vanishing thermal equilibration.

In conclusion, the findings of this work are a remark-
able manifestation of a transport regime with partial
equilibration: the charge transport is in an equilibrated
regime, while the heat transport is non-equilibrated
irrespective of the different symmetry nature of wave-
functions. Both quantities, in the asymptotic limits of
an equilibrated/non-equilibrated edge, respectively, are
determined by the edge quantum numbers. We expect
that such regimes should be relevant also to other FQH
states and materials. In fact, several proposed mech-
anisms for explaining the observed heat conductance
5
2κ0T at ν = 5/2 involve patterns of partial equilibration
within the (non-abelian) anti-Pfaffian state [31–34].
We envisage future work exploring the influence of
partial equilibration on noise, decoherence, and FQH
interferometry.
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