aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Topological Field Theory of Non-Hermitian Systems
Kohei Kawabata, Ken Shiozaki, and Shinsei Ryu

Phys. Rev. Lett. 126, 216405 — Published 28 May 2021
DOI: 10.1103/PhysRevLett.126.216405


https://dx.doi.org/10.1103/PhysRevLett.126.216405

Topological Field Theory of Non-Hermitian Systems

Kohei Kawabata,!** Ken Shiozaki,> ' and Shinsei Ryu?*

' Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
2Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
3Department of Physics, Princeton University, Princeton, New Jersey, 08540, USA

(Dated: February 15, 2021)

Non-Hermiticity gives rise to unique topological phases without Hermitian analogs. However, the effective
field theory has yet to be established. Here, we develop a field-theoretical description of the intrinsic non-
Hermitian topological phases. Because of the dissipative and nonequilibrium nature of non-Hermiticity, our
theory is formulated solely in terms of spatial degrees of freedom, which contrasts with the conventional theory
defined in spacetime. It provides the universal understanding about non-Hermitian topological phenomena,
such as the unidirectional transport in one dimension and the chiral magnetic skin effect in three dimensions.
Furthermore, it systematically predicts new physics; we illustrate this by revealing transport phenomena and skin
effects in two dimensions induced by a perpendicular spatial texture. From the field-theoretical perspective, the
non-Hermitian skin effect, which is anomalous localization due to non-Hermiticity, is shown to be a signature

of an anomaly.

Topology plays a key role in modern physics. In partic-
ular, topological phases of matter have been arguably one
of the most actively-studied condensed-matter systems in re-
cent years [1-3]. A universal understanding of topological
phases is obtained by topological field theory in spacetime.
For example, the Chern-Simon theory describes the quantum
Hall effect [4-9], and the axion electrodynamics describes the
magnetoelectric effect [10, 11]. One of the consequences of
the topological field theory description is the bulk-boundary
correspondence: in the presence of a boundary, a topologi-
cal field theory is gauge dependent at the boundary, and this
gauge noninvariance must be compensated by an anomaly at
the boundary [12].

While topological phases were mainly investigated for Her-
mitian systems at equilibrium, topological phases of non-
Hermitian systems are attracting growing interest [13-57].
Non-Hermiticity arises from dissipation [58—60], and the in-
terplay between non-Hermiticity and topology leads to new
physics in open classical and quantum systems [61-74]. One
of the remarkable consequences of non-Hermiticity is new
types of topological phases without Hermitian analogs. For
example, non-Hermitian topological phases arise generally in
odd spatial dimensions [24, 31], while no topological phases
appear in these dimensions for Hermitian systems without
symmetry. These unique topological phases arise from the
complex-valued nature of spectra, which enables two types of
energy gaps, i.e., point and line gaps [31]. In the presence
of a boundary, such intrinsic non-Hermitian topology leads to
the anomalous localization of an extensive number of eigen-
states [48, 49]—the non-Hermitian skin effect [18, 25, 26].

However, topological field theory has yet to be established
for non-Hermitian systems. The Chern-Simons theory was
shown to remain well defined even for non-Hermitian Chern
insulators [34]. Still, this theory only describes non-Hermitian
topological phases that are continuously deformed to Hermi-
tian phases. Field-theoretical characterization of intrinsic non-
Hermitian topology has remained elusive, although it is cru-
cial for understanding and exploring non-Hermitian topologi-

cal phenomena including the skin effect.

In this Letter, we develop topological field theory of non-
Hermitian systems. We show that field theory of intrinsic non-
Hermitian topology is formulated solely by spatial degrees of
freedom as a consequence of the dissipative and nonequilib-
rium nature of non-Hermiticity. This contrasts with the con-
ventional theory defined by both spatial and temporal degrees
of freedom. Our theory universally describes and systemati-
cally predicts unique non-Hermitian topological phenomena.
Furthermore, we show that the non-Hermitian skin effect is a
signature of an anomaly.

Non-Hermitian topology. — Non-Hermitian systems give
rise to unique topological phases that have no counterparts
in Hermitian systems. Such intrinsic non-Hermitian topology
arises even in one dimension. Suppose that a non-Hermitian
Bloch Hamiltonian H (k) has a point gap, i.e., it is invertible
in terms of reference energy E € C [i.e., det [H (k) — E] #
0 for all k] [24, 31]. Then, the following winding number
W1 (E) € Z is well defined:

Wh(E) = — ﬁz % (%logdet (H (k) — E]) W

Notably, W1 (E) vanishes when H (k) — E is Hermitian. This
is consistent with the absence of topological phases in one-
dimensional Hermitian systems without symmetry [1-3].

A prototypical lattice model with nontrivial W; is given
by [75]

A= ‘é S+ e+ Q= en], @
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where &, (¢)) annihilates (creates) a particle on site n, and
v € R denotes the asymmetry of the hopping amplitudes
and describes the degree of non-Hermiticity. The correspond-
ing Bloch Hamiltonian reads H (k) = — cosk + iy sin k and
winds around the origin in the complex energy plane. Con-
sequently, we have W;(E) = sgn () as long as the refer-
ence energy F is inside the region surrounded by the loop of



H(k). Despite the presence of a point gap, an energy gap
for the real part of the spectrum closes at £ = +7/2, i.e.,
ReH (k = £m/2) = 0; this type of energy gap is called
a line gap (21, 31]. To understand a universal feature of
non-Hermitian topology, let us consider the continuum Dirac
Hamiltonian around the line-gap-closing points:

H(k) =k + iy. 3)

This non-Hermitian Dirac Hamiltonian, similarly to its lattice
counterpart, is characterized by the nonzero winding number
Wi (E) =sgn(y—ImE) /2.

An important consequence of nontrivial W, is the non-
Hermitian skin effect [48, 49]. In the presence of a bound-
ary, there appear |W, (E)| eigenstates with the eigenenergy E
at the boundary. Notably, W;(E) can be nontrivial for many
choices of the reference energy F, and consequently, an ex-
tensive number of eigenstates are localized at the boundary.
In the lattice model (2), all the eigenstates are localized at the
right (left) edge for v > 0 (v < 0). Such anomalous localiza-
tion is impossible in Hermitian systems and hence a unique
non-Hermitian topological phenomenon.

Topological field theory.— Before developing effective
field theory for intrinsic non-Hermitian topology, let us briefly
recall the Hermitian case. The effective field theory for Her-
mitian systems is obtained by introducing a gauge potential
(A, @) to a microscopic Hamiltonian and integrating out mat-
ter degrees of freedom. The quantum partition function of
a Hamiltonian H (k) is given by path integral as Z[A, ¢] =
[ DYD1p €S with the (real-time) action

§= / U [i0 + ¢ — H(—i0z — A)| v d%zdt.  (4)

Here, 1) and 1) describe matter degrees of freedom. Integrating
over the matter field, we obtain the effective action S[A, ¢] for
the external field, ¢/5(4:¢] .= Z[A, ¢]/Z[0] with

Z[A, ¢] = det[iw + ¢ — H(k — A)]. )

In the presence of an energy gap, the effective action is given
by a local functional of (A, ¢). The response of the system
to the external field can be read off from the current density
j := 6S/5A. In this formulation, the topological invariant
that appears in the topological term of the effective action is
given by the Green’s function [76]

Go(k,w) = (iw — H(k)) ™", (6)

which is a non-Hermitian matrix. For example, if we consider
the Dirac Hamiltonian H(k) = k.o, + kyo, + mo, with
Pauli matrices o;s, we obtain the (2 + 1)-dimensional Chern-
Simons theory, which describes the quantum Hall effect.

The above path integral, in its Euclidean version, assumes
the Gibbs state as an equilibrium density matrix. On the other
hand, for the non-Hermitian case, the thermal equilibrium is
no longer achieved, and it is generally unclear what kind of

path integral one should set up. This constitutes a funda-
mental difficulty for developing effective field theory. This
may be tackled, for example, by the Schwinger-Keldysh ap-
proach [77]. Nevertheless, as long as an energy gap for the
real part of the spectrum (i.e., line gap) stays open, the above
procedure gives rise to topological field theory even for non-
Hermitian systems. In this case, non-Hermitian topological
phases are continuously deformable to their Hermitian coun-
terparts [31], and share the same topological field theory. For
example, for non-Hermitian Chern insulators, the above pro-
cedure delivers the (2 + 1)-dimensional Chern-Simons theory
[34]. However, this is not the case for intrinsic non-Hermitian
topology. For the non-Hermitian Dirac Hamiltonian (3), the
line gap vanishes, and matter degrees of freedom cannot be
integrated out safely; if we calculate S[A, ¢] from Eq. (5), it
is ill defined. We also note that the quantization of W;(E)
in Eq. (1) is guaranteed by the point gap E(k) # E instead
of the line gap Re E(k) # E, which is a unique gap structure
due to the complex-valued nature of the spectrum [24, 31, 37].

We thus seek a different formulation of field theory for in-
trinsic non-Hermitian topological phases. Since these phases
arise out of equilibrium, the temporal degree of freedom
should play a special role. Then, let us Fourier transform the
field operator in time by ¥ (z,t) = [ ¥g(x)e*E'dE and fo-
cus on fixed energy E. We also switch off the scalar potential
¢ and focus on a time-independent vector potential A(x). The
action (4) in spacetime reduces to

Sp = / Y [H(=i0; — A) — E|¥g diz. )

In contrast to Eq. (4), this action is written solely in terms of
the spatial degrees of freedom. The functional integral

Zp[A] = / DypDyp ¢F = det [H(k — A) — E] (8)

serves as a generating functional of the single-particle Green’s
function (E — H(k))™" with reference energy E. It is there-
fore expected to capture all physical information—including
topological one such as the non-Hermitian skin effect. This
type of spatial field theory is commonly used for Anderson
localization [78, 79] and also for Hermitian topological sys-
tems in odd dimensions [80]. It is discussed also for Floquet
systems and their boundary unitary operators [81].

To further emphasize the special role played by the tempo-
ral direction, we note that one of the wavenumbers, such as
k in Eq. (3), plays a similar role to frequency w for Hermi-
tian systems; the inverse of the Green’s function G Yk, w)
in Eq. (6) for a Hermitian Hamiltonian is identified with a
non-Hermitian Hamiltonian H (k) in Eq. (8) by replacing w
with k. Thus, the effective action of non-Hermitian systems
in d + 0 dimensions is mathematically equivalent to that of
Hermitian systems in (d — 1) + 1 dimensions. Consistently,
d-dimensional non-Hermitian systems are topologically clas-
sified in the same manner as (d — 1)-dimensional Hermitian
systems in the same symmetry class [82]; the difference of



one dimension corresponds to time [83]. The degree of a point
gap, such as v in Eq. (3), gives a relevant energy scale and en-
sures the local expansion of the effective action by the gauge
potential.

One dimension. — Below, we explicitly provide field the-
ories of intrinsic non-Hermitian topology and discuss unique
phenomena including the skin effect. For the non-Hermitian
Dirac Hamiltonian (3), the effective action is

Sp[A] ~itr [(H(-id,) — E)A(z)], ©)

where the vector potential A is assumed to be sufficiently
small. After taking the sum explicitly, this further reduces
to

sel4] = Wi(B) [ A, (10)

where the winding number W;(E) is defined for reference
energy E as Eq. (1). This is the (1 + 0)-dimensional Chern-
Simons theory. As discussed above, replacing = with t, we
have the (0 + 1)-dimensional Chern-Simons theory, which
describes Hermitian systems in zero dimension.

From this effective action, the current is obtained as

j(z, E) = (igf(t‘;] = Wh(E). (11)

Thus, particles unidirectionally flow from the left to the right
(from the right to the left) for W; > 0 (W; < 0). Consistently,
in the lattice model (2), the hopping amplitude from the left
to the right is greater (smaller) than that from the right to the
left for W7 > 0 (W; < 0). This type of directional amplifica-
tion ubiquitously appears, for example, in open photonic sys-
tems [17, 24, 47, 52] and parametrically-driven bosonic sys-
tems [27]. The topological field theory (10) underlies such
unidirectional transport induced by asymmetric hopping.

Skin effect as an anomaly. — In the presence of a bound-
ary, the topological action is no longer gauge invariant. Sup-
pose that the system described by Eq. (10) lies in z;, <
xz < xR, outside of which is the vacuum. Then, under
the gauge transformation A — A + df /dz with an arbi-
trary function f, the effective action Sk changes into Sg +
W1 (E) [f(zr) — f(z1)] and explicitly depends on the choice
of the gauge f. To retain gauge invariance, additional degree
of freedom is required at the boundary x = zp,xg. This
boundary system reads

SR — Wi (B) [p(ar) — ¢(aL)], (12)

where ¢(z) denotes the phase of the wavefunction at z.
Since ¢ changes to ¢ + { through the gauge transformation,
S;’,:""“ #Y changes into SE°u“d“y—W1 (E) [f(zr) — f(zL)]-
Thus, while Sg and Sg’""d““’ are individually gauge depen-
dent, their combination Sg + S}’;“"dary is indeed gauge in-
variant.

The boundary action (12) describes a pair of the charges
Wi(E) and —W,(E) at z = zr and z = zy,, respectively.

These charges correspond to skin modes. Importantly, refer-
ence energy E can be chosen arbitrarily as long as W;(E) is
nontrivial. An extensive number of the charges appear at the
boundary, which correspond to an extensive number of skin
modes. Thus, the skin effect originates from a non-Hermitian
anomaly. This contrasts with Hermitian systems in one di-
mension, in which an anomaly results in only a finite num-
ber of symmetry-protected zero-energy modes at the bound-
ary. We note that an anomaly discussed here is distinct from a
dynamical anomaly in Refs. [42, 51, 53, 84].

Three dimensions.— Topological field theories are for-
mulated also in higher dimensions. In general, non-Hermitian
systems in d dimensions are described by the (d+ 0)-
dimensional Chern-Simons theory for odd d. This contrasts
with Hermitian systems, which are described by the (d + 1)-
dimensional Chern-Simons theory for even d.

In three dimensions, for example, the non-Hermitian Dirac
Hamiltonian H (k) = k.0, + ky0, + k.0 + i~y results in the
(3 + 0)-dimensional Chern-Simons theory:

Wi (E .
SslA] = % 3 / e Ai(@)0; An(@)dPe,  (13)
ijk
where W3 is the three-dimensional winding number. The cur-
rent density of this theory is

.  5SplA]  Wy(E)
i@ E) = aAE(m) = o

where B := V x A is a magnetic field. Thus, particles
flow along the direction of the magnetic field B. This is
the chiral magnetic effect [85] in which non-Hermiticity in-
duces chirality imbalance in a similar manner to an electric
field. This further means that the direction of amplification
can be controlled by a magnetic field, which is a unique prop-
erty of three-dimensional systems. It is also remarkable that
Ref. [53] recently constructed a lattice model that exhibits the
non-Hermitian chiral magnetic effect. This Letter gives its
field-theoretical understanding.

Under the open boundary conditions, Sg is gauge depen-
dent. For the quantum Hall effect, which is described by the
(2 + 1)-dimensional Chern-Simons theory, the gauge nonin-
variance is balanced with an anomaly of chiral fermions at the
boundary [12]. In the non-Hermitian case, the boundary de-
grees of freedom are described by a Hamiltonian with a sin-
gle exceptional point, H(k) = +k, — ik,, for |W3(E)| =
1 [54, 86], which reduces to the inverse of the Green’s func-
tion of the conventional chiral fermions by replacing k, with
frequency w. In 1 + 1 dimensions, a chiral anomaly is de-
scribed by 8,52 +8,j;* = E/m with an axial current (52, j*)
and an electric field E := 9, A; — 0;A. [87-89]. Replacing
time with another spatial component y, we have the following
non-Hermitian analog of the anomaly equation [86]:

V- j4x,E) = M’ (15)

™

B(z), (14)

where B := 0,A, — 0,A, is a magnetic field perpendicu-
lar to the surfaces. In terms of the global quantities such as



the charge NR (INL) of the right-moving (left-moving) parti-
cle H(k) = k, — ik, [H(k) = —k, — iky], as well as the
magnetic flux ® := [ B(z)d’z, this anomaly equation re-
duces to

Nu(B) - Ny(B) = B2, (16)
Combining it with the global conservation law Ny + Np, = 0
due to U(1) symmetry, we have Ng = W3® /27 and Ny, =
—~W3®/2%. Here, /27 is the number of the fluxes since 27
denotes the flux quantum in the natural units (i.e., e = h = 1).
Thus, a signature of the topological action in three dimensions
appears as the skin effect induced by a magnetic field. The
number of the skin modes is given by the topological invariant
W3 and the number of fluxes. While Ref. [53] predicted this
three-dimensional version of the skin effect—chiral magnetic
skin effect—on the basis of the bulk topological invariant, we
here derive it from a chiral anomaly at a boundary. It occurs
also in a lattice model [86, 90].

Two dimensions.— For Hermitian systems, topological
field theories of superconductors in 0 + 1 and 1 + 1 dimen-
sions, and insulators in 2 + 1 and 3 + 1 dimensions are de-
rived from the Chern-Simons theories in 2 + 1 and 4 + 1
dimensions, respectively [10]. Topological field theories of
non-Hermitian systems in even dimensions are also derived
from higher-dimensional ones. For example, let us reduce the
z direction of the (3 + 0)-dimensional theory (13) by consid-
ering z to be a parameter and making the gauge potential A
be independent of z. Then, the effective action (13) reduces
to

SplA] = %Z / 0(z, B)ei;0,4; (@)l (17)
ij

with the Wess-Zumino term 6 [86, 91]. This is the effective
action of non-Hermitian systems in two dimensions. Here, € is
anon-Hermitian analog of the electric polarizationin (1 + 1)-
dimensional Hermitian systems [92], and Z» quantized in the
presence of reciprocity or particle-hole symmetry.

The action (17) generally describes non-Hermitian topolog-
ical phenomena in two dimensions. The current density is

. 1
Ji(z, E) = o E €ij0;0(x, E), (18)
J

which shows a particle flow in the direction perpendicular
to the gradient of §. Now, suppose that @ is spatially mod-
ulated along the y direction. Naively, such a y-dependent
texture leads to a flow along the y direction and is irrele-
vant to transport along the z direction. However, Eq. (18)
describes a perpendicular flow along the z direction as a
result of non-Hermitian topology. To confirm this phe-
nomenon, we investigate the lattice model H = Hy + V
with Ho(k) = o,sink, + oysink, + iy (cosk, + cosky)
and V(x) = o, sing(x) + iy cos ¢(x). Here, ¢ is given as
¢(x) = m/2 — 2mOy/L,;, leading to nontrivial # [86]. While
no topological features appear in the absence of the spatial

() 2 (b) 50
1 2 40t  with texture
w E 30
g 0 8 ------------------------------------
= g 20 without texture
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- S 10
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-2 -1 0 1 2 0 5 10 15 20
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FIG. 1. Non-Hermitian topological phenomena in two dimensions.
The periodic boundary conditions are imposed along both directions
(L, = 50,L, = 20; v = 0.5). (a) Complex spectra in the pres-
ence (© = 1, blue dots) and absence (@ = 0, gray regions) of
the spatial texture. (b) Time evolution of the wavepacket center
of mass along the x direction. The initial state is prepared to be

[ (0)) o< 32, |& = Lz /2,y).

texture, the y-dependent texture induces the complex-spectral
winding [Fig. 1 (a)]. Consequently, a particle flow along the
direction arises [Fig. 1 (b)], which is consistent with the topo-
logical field theory description (18). This perpendicular trans-
port accompanies the perpendicular skin effect under the open
boundary conditions [86]. The number of the skin modes is
controlled by the spatial gradient ©, which is also a unique
feature of two-dimensional systems.

Discussions.— In this Letter, we develop topological
field theory of non-Hermitian systems. Because of the dissi-
pative and nonequilibrium nature of non-Hermiticity, the tem-
poral degree of freedom is distinguished from the spatial de-
grees of freedom, and the field theory is formulated solely by
the latter. This theory provides the universal understanding of
non-Hermitian topological phenomena. We also demonstrate
that the non-Hermitian skin effect originates from an anomaly.
For Hermitian systems, topological field theory is relevant not
only to noninteracting systems but also to disordered and in-
teracting systems. Similarly, our theory should be applicable
to non-Hermitian systems with disorder and interaction. Fi-
nally, it is noteworthy that other types of nonequilibrium topo-
logical field theory have recently been developed for Floquet
operators [81] and Lindblad master equations [93].
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