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We employ electric circuit networks to study topological states of matter in non-Hermitian sys-
tems enriched by parity-time symmetry PT and chiral symmetry anti-PT (APT ). The topological
structure manifests itself in the complex admittance bands which yields excellent measurability
and signal to noise ratio. We analyze the impact of PT -symmetric gain and loss on localized edge
and defect states in a non–Hermitian Su–Schrieffer–Heeger (SSH) circuit. We realize all three
symmetry phases of the system, including the APT -symmetric regime that occurs at large gain
and loss. We measure the admittance spectrum and eigenstates for arbitrary boundary conditions,
which allows us to resolve not only topological edge states, but also a novel PT -symmetric Z2

invariant of the bulk. We discover the distinct properties of topological edge states and defect
states in the phase diagram. In the regime that is not PT - symmetric, the topological defect
state disappears and only reemerges when APT symmetry is reached, while the topological
edge states always prevail and only experience a shift in eigenvalue. Our findings unveil a future
route for topological defect engineering and tuning in non-Hermitian systems of arbitrary dimension.

Introduction. Topological matter has become a prime
subject of contemporary research across a wide range of
areas in physics [1–3]. As they feature a certain degree of
robustness and insensitivity against perturbations, topo-
logical boundary states promise various future technolog-
ical applications. These include unidirectional transport
without backscattering [4], wave guidance, robust quan-
tum computation [5, 6], or other functionalities that, due
to their topological character, are tolerant to fabrication
imperfections and unwanted parasitic effects. Further-
more, topological properties experience an intriguing de-
gree of diversification when they are combined with dis-
crete symmetries such as parity P and time reversal T .
Combined, PT symmetry descended from the mathemat-
ical analysis of quantum field theories and triggered the
first wave of interest in non-Hermitian photonics even
before the perspective of topological matter in synthetic
platforms had been shaped [7–10]. PT symmetry en-
ables the emergence of a plethora of phenomena such as
non-reciprocal light propagation [11, 12], unidirectional
invisibility [13] and arbitrarily fast state evolution de-
spite limited bandwidth [14] not only in one but also
higher dimension [15]. The presence of P and T symme-
try ensures a real spectrum [16–18] and hence conserved
dynamics despite the presence of gain and loss.

Topolectric circuits [19–21] have only recently emerged
as a platform for synthetic topological matter. Building
on the insight that Berry’s phase only requires a physical
system to exhibit the principle of interference, topolog-
ical band structures can result from systems as diverse
as mechanics described by Newton’s equation [22, 23],
optical waveguides by the Helmholtz equation [3], and
electrons by the Schrödinger equation [24]. For topolec-
tric circuits, it is the combination of Kirchhoff’s rule
and the complex-valued admittance which provides the
source for non-trivial topological circuit networks [21].
As opposed to other topological platforms where topo-
logical properties predominantly emerge through energy
or frequency bands, a topolectric circuit network fed by
an external AC current exhibits topological admittance
bands. Because of the unparalleled precision and simplic-
ity of the required voltage measurements of the circuit
nodes against ground, electric circuits enable a detailed
design and measurement of admittance bands [25]. Due
to the large variety of circuit components, the range of
model Hamiltonians realized in topolectric systems in-
cludes Chern insulators [26–29], non-reciprocal chains
and other non-Hermitian phenomena [30–37], higher-
order topological insulators [38–41], topological semimet-
als [21, 42–45], entanglement simulators for photons [46],



2

a)

b)

c)

t1 t2 t1 t2 t1 t2

−i γ i γ −i γ i γ −i γ

1

t1 t2 t1 t1 t2 t1

−i γ i γ 0 −i γ i γ

1

C1 C2

L RB

C1 C2

L RB

C1 C2

L RBRA RAL L

11

FIG. 1. Theoretical hopping model and circuit diagram. a)
Bulk model with two sites per unit cell (red and blue), with
alternating hoppings t1 and t2 and on-site gain/loss terms
±iγ. b) Insertion of the PT symmetric defect. c) Circuit di-
agram of the experimental implementation, unit cells framed
in grey boxes. The hoppings are realized by capacitors C1,
C2, the on-site gain and loss by resistive elements RA, RB .
The inductor L tunes the resonance frequency of the circuit.

and topological states in arbitrary dimension larger than
three [21, 47].

In this Letter, we accomplish two things. First, we
design and implement a circuit realization of the non-
Hermitian Su-Schrieffer-Heeger (SSH) chain where gain
and loss can be tuned to investigate the PT symmetry.
Through measuring the non-Hermitian SSH circuit ad-
mittance spectrum and eigenstates for periodic and open
boundary conditions, we can experimentally access both
the topological midgap states and the topological bulk
invariant. Second, we are able to analyze the distinct na-
ture of the topological SSH edge and defect states upon
tuning gain and loss. While the topological edge states
are only modified in terms of their decay length, we ob-
serve the disappearance and reentrance of the topologi-
cal defect state depending on the symmetry of the non-
Hermitian circuit.

PT SSH circuit. The PT SSH tight-binding model,
schematically illustrated in Fig. 1a, consists of a chain
with alternating hoppings t1, t2, and an alternating on-
site gain and loss term ± i γ. The Hermitian SSH model
for γ = 0, which was initially reported to be realized
in an optical experiment in Ref. 48, is symmetric un-
der both parity P, which acts as inversion along a bond,
and time reversal T , which acts as complex conjuga-
tion. The addition of gain/loss breaks both P and T ,
as they change the sign of γ. When combined, PT is
still conserved in the non-Hermitian SSH model. Chiral
symmetry, represented by σz in the SSH band basis in
Eq.(1), is likewise violated by the gain/loss term. Com-
bining it with time reversal T , however, yields a sym-
metry in the non-Hermitian case, the anti-PT symme-
try APT = σzT [49–51]. The SSH bulk is characterized

by a π-quantized Berry phase, the Zak phase [52], that
predicts the presence of mid-gap edge states by Hermi-
tian bulk-boundary correspondence (BBC). For non-zero
gain and loss, the edge states individually always break
PT symmetry since PT maps them to the opposite edge
[53, 54]. Even though the bulk-boundary correspondence
is challenged in its generality, topological invariants can
often be transcribed from the Hermitian to the non-
Hermitian case [55–60].

In order to design a manifestly PT -symmetric topo-
logical midgap state in a waveguide system, Poli et al.
[61] and Weimann et al. [62] suggested to insert a defect
site that forms a kernel of PT symmetry, as shown in
Fig. 1b. This way, a domain wall between different topo-
logical phases is created where a PT -symmetric topo-
logical midgap state can emerge. Weimann et al. ob-
served that the localized defect state disappears when
the bulk states break PT symmetry. As we will demon-
strate, there is another symmetry phase transition, where
all eigenstates of the non-Hermitian SSH model become
APT -symmetric. Here, the defect state exhibits reen-
trant behavior. Reaching this regime requires a large
gain/loss term which did not prove feasible in a platform
such as waveguides (Appendix C).

We adopt electric circuits to experimentally observe
all three regimes, i.e., the PT , APT , and the symmetry-
broken phase, and investigate the evolution of the topo-
logical defect and edge states. The non-Hermitian SSH
model is represented by the admittance matrix, also
termed circuit Laplacian J(ω) [21] of the circuit. The
Laplacian describes the voltage response V (ω) to an AC
input current I(ω) according to

I(ω) = J(ω)V (ω). (1)

The vector components of V and I correspond to the
nodes or sites in the circuit. We investigate the circuit in
a steady state, such that the AC frequency f = ω/(2π)
can be treated as a parameter.

Equation (1) implies that admittance measurements
in dissipative circuits are as precise as in those without
loss, since the admittance of resistive and reactive cir-
cuit components only differs by a complex phase. Here,
circuits supersede platforms that rely on transport mea-
surements, where loss causes exponentially diminished
signal intensities worsening the obtainable signal-to-noise
ratio. Fig. 1c shows our SSH circuit design. The hop-
pings are represented by capacitors between neighboring
nodes, the onsite gain and loss by resistive elements to
ground. While not further discussed in the main text,
balanced gain and loss can be implemented using nega-
tive impedance converters, see Appendix G, which was
previously demonstrated in Refs. [63, 64]. Connecting
all nodes to ground through inductors allows us to tune
the offset of the circuit’s admittance by adjusting the
AC frequency ω. With periodic boundary conditions, the
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FIG. 2. Admittance band structure of the periodic PT SSH chain (20 unit cells) in different symmetry phases. a) Phase
diagram of the PT SSH model. b) – d) Theoretical and measured admittance band structure for C1 = 100 nF, C2 = 200 nF,
L = 10µH, (RA)−1 = 0 and three different values of RB , measured at ω0 = 90.6 kHz. The blue points (solid lines) show the real
part of the measured (theoretical) normalized admittance eigenvalues j(k)/(iω0C0) with C0 = 100 nF, the red points (dashed
lines) the imaginary parts. The values are corrected by the nominal loss offset of (2RB)−1.

Laplacian can be expressed in Bloch form for the two-site
unit cell (Appendix A, B) as

J(k, ω) = iω C0

[
(−t1 − t2 cos k)σx − t2 sin k σy+

+i γ(ω)σz + i ε(ω) 1
]
. (2)

Here, σi denotes the ith (2 × 2) Pauli matrix, t1 (t2) is
the intra-cell (inter-cell) hopping, and γ represents the
alternating gain/loss. If the input current is tuned to
the mid-gap frequency ω0 = [(t1 + t2)C0 L]−1/2, ε merely
describes a constant resistive offset (Appendix B), which
we will omit in the following. In what follows, we use
t1 = 1, t2 = 2 and always set ω = ω0 unless stated
otherwise.

Topological edge modes and non-Hermitian bulk-
boundary correspondence. We measure the admittance
band structure of the SSH circuit in all symmetry
regimes. At first, the circuit is set up with periodic
boundaries and no defect site. With a loss envelope of
ε = −γ, the resistive term vanishes on one site of the
unit cell, such that only every other node is connected to
ground by a resistor RB = 1/(2ω0 C0 γ). The phase dia-
gram of the PT SSH model shown in Fig. 2a depends on
the dimerization |t1 − t2| and the gain/loss term γ. The
phase transitions can be understood by investigating the
admittance band structure

j(k)/(iω0 C0) = ±
√
t21 + t22 + 2t1t2 cos k − γ2 (3)

that is formed by the eigenvalues of the Laplacian (1).
For sufficiently small γ, the radicant is always non-
negative, so that the resulting bands are real-valued,
as depicted in Fig. 2b for RB = 20 Ω, γ = 0.433. As
discussed in detail in Appendix D, this means that all
eigenstates are PT -symmetric, hence defining the PT -
symmetric phase. For large values of γ, the radicant
is always negative, so that the bands are fully imagi-
nary, which is represented by the measurement at RB =

2.5 Ω, γ = 3.46 in Fig. 2d. Accordingly, the eigenstates
are APT -symmetric. The PT -broken phase occurs for
intermediate γ, where the radicant of (3) is only negative
for a part of the Brillouin zone. As seen in Fig. 2c, at
RB = 5 Ω, γ = 1.73, exceptional points [65, 66] appear in
the band structure where the radicant of (3) changes sign
and the real and imaginary part of both bands is zero.

Since our measurements allow us to reconstruct the
eigenstates of J(k), we can calculate topological bulk
winding numbers of our circuit. The Zak phase of the
PT SSH model is only quantized in the PT -symmetric
regime [59, 67]. Calculating it from the measured eigen-
states of the lower band, we obtain (−0.999 ± 0.020)π
for the PT -symmetric setup, (0.651 ± 0.021)π for the
PT -broken setup, and (0.208 ± 0.029)π for the APT -
symmetric setup. These result match the theoretical val-
ues of ±π, 0.655π and 0.197π. It confirms that the π-
quantization is present in the PT -symmetric case but
absent for the other two.

Despite the breakdown of the Zak phase quantization,
the edge states of the PT SSH model are still present in
all three cases, as we see in our measurements for OBC.
This suggests that the topological classification of the PT
SSH model can be extended beyond the PT -symmetric
phase. In the PT -symmetric regime, the Zak phase of
a band can be re-expressed as the following PT winding
number (Appendix E),

WPTn =
1

2π

∮
BZ

dk ∂k arg
{

Ψ†n(k)PT Ψn(k)
}
, (4)

where Ψn(k) denote the eigenstates of the nth band. Due
to the antiunitarity of PT , this expression is gauge in-
variant up to multiples of two, so it induces a Z2 classifi-
cation. The PT winding number may provide a more
general topological classification of PT -symmetric 1D
models. If the eigenstates are PT -symmetric, the wind-
ing number (4) corresponds to the winding of the states’
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FIG. 3. Measured eigenvectors and eigenvalues of the PT SSH chain (39 sites) with defect site and open boundary conditions.
The edge states are marked in red, the defect state in blue and the bulk states in grey. C1, C2, L and RA are identical to the
PBC measurement in Fig.2. a) – c) Absolute values of the measured admittance eigenvectors. d) – f) Measured admittance
eigenvalues in the complex plane. The values are corrected by the nominal loss envelope of (2RB)−1.

PT eigenvalue eiϕn(k) around the origin of the complex
plane and is equal to the Zak phase. This equivalence
breaks down in the PT -broken and APT -symmetric
phase. Whereas the Zak phase loses its quantization out-
side the PT -symmetric domain, WPT still provides a Z2

classification and predicts the presence of edge states in
the PT SSH model. For our three measured setups, the
PT winding number always evaluates to one, predict-
ing the presence of edge states in all three phases. This
is confirmed in our measurements of an open boundary
setup, see Fig. 3a-c. Further discussion and comparison
of the PT winding number and other topological classifi-
cations of the non-Hermitian SSH model [53, 55–60] can
be found in Appendix E.

Topological defect mode. In order to study the influ-
ence of dissipative terms onto topological midgap states,
we apply open boundary conditions and insert the PT -
symmetric defect site into the circuit. We study the same
points of parameter space as for PBC. The combined
action of PT and APT yields a linear anti-commuting
symmetry of the system. This constrains the eigenval-
ues to appear in pairs of opposite sign (Appendix D).
Upon addition of the defect site, the circuit has an un-
even number of sites, and as such a state with eigen-
value zero should exist. In our measurements, we identify

a defect midgap state in the PT and APT -symmetric
regimes for RB = 20 Ω and RB = 2.5 Ω, respectively,
marked in blue in Figs. 3a, 3c [68]. We confirm that
it is located at zero admittance, see Figs. 3d,f. In the
PT -broken phase (Figs. 3b,e) at RB = 5 Ω, no localized
defect state is present. The selective appearance of the
defect midgap state is contrasted by the edge midgap
states which we observe in all three symmetry phases
(Fig. 3, marked red). As seen in Fig. 3d-f, their eigen-
values are fully imaginary, so they are symmetric under
APT .

Exponentially localized states in a periodic lattice
can be characterized by a complex-valued wave num-
ber k ∈ C. Their eigenvalue is then determined by the
corresponding analytic continuation of the band struc-
ture (Appendix F). Reversing this relationship, we find
the localization length of the mid-gap state by solving

det{J(k)} !
= 0 and obtain

k± = ± arccos

(
γ2 − t21 − t22

2t1t2

)
. (5)

Herein, k± are the two exceptional points of J(k) in
complex momentum space, i.e. the branch points of
equation (3). The localization length of the defect state
is given by |Im{k±}|. Since the arccos is real-valued
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for arguments between −1 and 1, but complex other-
wise, we expect that the defect state is delocalized in
the former case but localized in the latter. In the PT -
symmetric phase, |γ| < |t1 − t2| and k± take the form
π ± iκ, κ ∈ R+. This implies that the defect state
is localized with inverse localization length κ, as seen
in Fig. 3a. In the PT -broken phase, the k± are real-
valued. Therefore, they appear in the band structure
as the two exceptional points shown in Fig. 2c. Since
these modes are delocalized, no defect state can be ob-
served, see Fig. 3b, e. In the APT -symmetric phase,
|γ| > |t1 + t2|, k± is fully imaginary, k± = ±iκ. Con-
sequently, the defect state exhibits reentrant behavior in
this regime, as seen in Fig. 3c, f.

The simultaneous presence of the edge states and ab-
sence of a localized defect state is in apparent opposition
to the BBC of conventional Hermitian topological sys-
tems. This effect is uniquely non-Hermitian, since the
edge states’ localization during the complex gap closing
is protected by their imaginary eigenvalue shift. In con-
trast, the defect mode is pinned to eigenvalue zero and
delocalizes. This phenomenon is distinct from the previ-
ously known BBC violations in the non-Hermitian skin
effect [30, 31], which is not present in the PT SSH model.

Conclusion. By the prototypical example of a PT
SSH circuit for which we can access all symmetry regimes
of the phase diagram, we propagate electric circuits as a
preeminently suited platform to study the interdepen-
dence of symmetry, non-Hermiticity, and topology. In
particular, we find that topological defect engineering
might enable aspects of topological mode tuning inac-
cessible to topological edge modes. Topolectric circuits
will prove promising to enter this unchartered territory
of topological matter with an unprecedented degree of
tunability and measurability. For instance, due to the
circuit platform, the principles laid out here can be read-
ily generalized to higher dimensional circuits, and can be
combined with non-linearities [69–71].
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