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We adapt the robust phase estimation algorithm to the evaluation of energy differences between
two eigenstates using a quantum computer. This approach does not require controlled unitaries
between auxiliary and system registers or even a single auxiliary qubit. As a proof of concept,
we calculate the energies of the ground state and low-lying electronic excitations of a hydrogen
molecule in a minimal basis on a cloud quantum computer. The denominative robustness of our
approach is then quantified in terms of a high tolerance to coherent errors in the state preparation
and measurement. Conceptually, we note that all quantum phase estimation algorithms ultimately

evaluate eigenvalue differences.

Introduction.— Assessing energy differences, rather
than total energies, is ubiquitous in physics. Whether
there is a gap between the ground and first excited
state of a particular Hamiltonian is related to outstand-
ing problems in condensed matter [1] and high energy
physics [2], and it is at the heart of deep connections
between many-body physics and theoretical computer
science [3]. Myriad spectroscopic techniques ultimately
compare the energies of two or more eigenstates of a
single Hamiltonian as one among many identifying fea-
tures of a particular piece of matter. This paper is
concerned with using a quantum computer for this pur-
pose. We indicate the Hamiltonian of interest as H with
N = 2" = dim H. The ground state of H is labeled by its
eigenvalue, |Ep), and the ath eigenstate above it is | E,).

By repeatedly preparing particular superpositions of
two energy eigenstates, allowing them to undergo a uni-
tary evolution W(H) [4-7], undoing the preparation, and
measuring in the computational basis (see Fig. 1b), we
can infer the difference in energy between the two eigen-
states without the need for auxiliary qubits [8] or con-
trolled unitary operations. This differs from other ap-
proaches to quantum phase estimation (QPE) [9] that
use one or more auxiliary qubits to provide a ground ref-
erence for the phase accumulated on the register encoding
the physical system [10-19]. Our procedure is inspired
by the robust phase estimation (RPE) algorithm that was
introduced to characterize and calibrate the phase (i.e.,
rotation angle) of a single-qubit gate [20].

A common form for W(#H) is an approximation to the
exponential map governing Hamiltonian evolution for a
fixed time [21, 22|, though it may take other forms for
which the phase is a known function of the eigenval-
ues [5, 23].  While phase estimation is broadly applicable
to the calculation of eigenvalues on quantum computers,
the physical significance of W(H) is a consequence of en-
coding the degrees of freedom of a system of interest in
the Hilbert space of n qubits. While we consider the
specific encoding of interacting electrons in a molecular
system [24, 25], we note that our results can be extended
to others including those relevant to nuclear matter [26],

quantum field theories [27], and spin systems [28].

In fact all forms of phase estimation, with or with-
out auxiliary qubits, are not simply eigenvalue estima-
tion but eigenvalue difference estimation. The operations
W(H) and W(H~+aZ) are identical up to an undetectable
global phase, exp(ix(«)), where the form of x depends
on W [29]. In order to actually estimate the phase of an
eigenstate of W, one must have access to a known refer-
ence energy level. A(W), a singly-controlled version of
W, is generated by a Hamiltonian of the form Oy & H,
where Oy is the N x N zero matrix. The N-fold degen-
erate zero-energy subspace created by Oy allows for the
estimation of the phase of any of the eigenstates of H
relative to these reference eigenstates (see Fig. 1a). This
is the structure of most QPE implementations, which we
henceforth generically refer to as QPE algorithms with
auxiliary qubits [30]. Part of what distinguishes RPE is
that instead of relying on the auxiliary register to rel-
ativize the phase of the unitary evolution, the relative
phase is accumulated between two energy eigenstates in
a uniform superposition. This allows us to avoid using
an auxiliary register and controlled unitaries at the cost
of requiring more complicated state preparation.

Three strengths of QPE with auxiliary qubits are (i)
the relativization of the phase accumulated on the 1
branch of the auxiliary register to the 0 branch, (ii) the
projection of the system register onto an energy eigen-
state after a single round, and (iii) the ability to reuse
that eigenstate in subsequent rounds without having to
prepare it again. Point (i) is a critical advantage if one
needs absolute energies, but not essential if energy differ-
ences will suffice. Further, if one knows the trace of the
Hamiltonian over a M-dimensional subspace it is possi-
ble to reconstruct absolute energies from M — 1 indepen-
dent pairwise energy differences measured within that
subspace. This is evident in the experimental results
in Fig. 2. Points (ii) and (iii) are critical advantages
if state preparation dominates the Hamiltonian evolu-
tion resource requirements, noting that the depth of the
Hamiltonian evolution unitaries for RPE will be reduced
by merit of their not needing to be controlled unitaries.
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FIG. 1. Comparison of QPE and RPE circuits. (a) In QPE the system register is prepared in the ath eigenstate of H (Up,q)
while Hadamards are applied to each of g auxiliary qubits. For j € [0,g — 1] W is applied 27 times with the jth auxiliary
qubit as a control. The inverse quantum Fourier transform (QFTT) is applied to the auxiliary register prior to measurement,
which yields g bits of E,. Each W acts on a 2N-dimensional Hilbert space in which the control qubit provides an N-fold
degenerate zero-energy subspace relative to which a phase difference accumulates between any of the N energy eigenvalues of
H. (b) In RPE there is no auxiliary register. First, a superposition of the ath and bth eigenstates of H is prepared (Up,,,,=0)-
Then W is applied kg4 times. The superposition is unprepared (Ug, oap= B) and all qubits are measured, yielding a sample from
P, for 8 = 0 and a sample from Ps for 8 = 7/2. P. and Ps encode Fy-FE, in a phase 04, defined in Eq. 2. W acts on an

N-dimensional Hilbert space and only energy differences between eigenstates of H can be extracted from this phase.

Not only does RPE offer overall circuit depth improve-
ment, but it reduces the total number of two-qubit op-
erations required.  These are a bottleneck in current
hardware given their low fidelities relative to single-qubit
gates [31, 32]. Given access to a gate-level description of
a circuit S that implements W(H) using only arbitrary
local gates and CNQOTs, the most straightforward way
to implement W(0y @ H) is to simply turn every gate
G in S into its singly-controlled version A(G). Though
clever compilation schemes [33-38] may offer non-trivial
improvements, if G contains s single-qubit gates and ¢
CNOTs it can be shown [39, 40] that the overall CNOT
cost of implementing A(G) may be as bad as 6t + 2s. We
expect these benefits to be substantial for hardware with
little or no error correction and restricted connectivity.

One might ask whether the need to repeat the po-
tentially erroneous state preparation and measurement
(SPAM) due to a lack of projection onto an energy eigen-
state after a single round of auxiliary-qubit-free RPE is
a limiting factor. A central result of this paper is the
observation that RPE’s robustness manifests as a high
tolerance to SPAM errors. This suggests conditions for
which this approach might be advantageously employed
for quantum simulation. In particular, an advantage
might be realized in the intermediate-term where adia-
batic [24, 41] or filtering-based [42—-44] state preparation
can be replaced by precompiled state preparation circuits
that exploit classical tractability and do not appreciably
contribute to the total circuit depth.

Methods.— RPE may be thought of as a combination
of Ramsey and Rabi experiments with logarithmic spac-
ing in the number of gate repetitions [45]. This allows
the phase of the gate to be learned with Heisenberg-like
scaling in accuracy, without requiring any entanglement
or auxiliary qubits. Additionally, RPE will still produce
accurate phase estimates even when there is a significant
amount of error in any of the constituent circuits’ state

preparations, measurements, or gates. Accordingly, RPE
has been demonstrated in experimental systems to yield
highly accurate phase estimates [46] while being robust
against various noise channels [47].

While RPE concerns itself with estimating a single-
qubit gate’s phase, (e.g., the angle  in the gate R, (6) =
exp(—ifo,/2)), this phase is actually the difference be-
tween the two eigenvalues of the Hamiltonian that gen-
erates the unitary rotation [48]. This principle can be
generalized to unitary maps of dimension greater than
two, allowing for the difference between two eigenvalues
of an arbitrary Hamiltonian to be estimated using RPE.

To adapt RPE to higher dimensions one simply needs
implementations of (i) W(#H) and (ii) a state preparation
unitary,

1 .
Up.pu=610) = 7 (1Ba) + € |Ey) = lpas = B), (1)

where we specifically require U, ,,, for two values of ¢4
that are separated by /2 radians. The energy difference
between eigenstates a and b is related to a relative phase,
04 mod 27, accumulated while evolving with W(H) for
a particular time interval that is absorbed into the units.
This relative phase is encoded in the probability distri-
butions

Pe(kgfap) = [(OU} 4, —oW** (H)Up,po=0lO)*  (2a)
= % (14 cos (kgfap)) and (2b)
Pallkylar) = [0} . W M)V gal O (20)

(1 +sin (kg0ap)) , (2d)

DN | =

where the circuits that sample from these distributions
are evident from Egs. 2a and 2c and the functional forms
of the distributions are given in Eqgs. 2b and 2d. Here
kg is the number of applications of W(H) during the



gth generation. kg, is chosen with logarithmic spacing,
ie., k; = 29, and experiments proceed by refining the
estimate of 0, across generations consisting of increasing
numbers of repetitions of W(H) [49].

For a fixed value of kg, the circuits represented by
Egs. 2a and 2c are repeated sufficiently many times to
estimate P, and P from the relative frequencies of 0 and
1 outcomes. Egs. 2b and 2d, then, unambiguously specify
4 on a segment of 27 /k, radians,

kgbqp = atan2 (2P, — 1,2P; — 1) mod 2m, (3)

where atan2 accounts for the branch cuts of arctan by
tracking the signs of the x and y components. RPE uses
estimates of 04, from experiments with kg for ¢’ < g to
select a particular segment. At each successive genera-
tion, if the right branch is chosen, the error in 6, will
exhibit Heisenberg-like scaling.

A key feature of RPE is its tolerance to additive er-
rors in P, and Ps. In the Supplemental Materials we
study the impact of coherent errors on state prepara-
tion ((0| Up,g,,) and “unpreparation” (U] , [0)). The
parameters of the error channel under consideration are
related to the deviation of the state prepared (or un-
prepared) relative to the target state, |@qp). These in-
clude errors that generate support with erroneous ampli-
tude (&) and phase (£,) in the “target subspace”, i.e.,
span{|E,), |Ep)}, but orthogonal to |@ap). It also in-
cludes leakage errors (&)) that generate support outside
of that subspace. We indicate equivalent errors occurring
during unpreparation (including readout) with primed
variables (e.g., &.).

We derived worst-case bounds on the associated ad-
ditive contributions to P. and P, and translated them
into worst-case bounds on additive error in the estimate
of kg0 (see Eq. 3). This additive error is indicated as
dx [50]. Combined with bounds on additive errors under
which RPE can succeed [20, 51], we identified conditions
on coherent SPAM errors that permit estimation of en-
ergy differences with Heisenberg-like scaling [52]. Our
results indicate a high tolerance to these errors. Promi-
nently, there are conditions for which RPE will still suc-
ceed if as much as ~ 9% of the probability in the prepared
(unprepared) state leaks outside of the target subspace.

Results.— To verify our RPE protocol for evaluating
energy differences in physical simulation we conducted
a proof-of-concept experiment through the cloud-based
IBM Quantum Experience [53, 54]. We computed three
of the independent pairwise energy differences between
the four eigenstates of molecular hydrogen (Hs) in a min-
imal basis along its dissociation curve. Combined with
a knowledge of the trace of the Hamiltonian over this
subspace, we reconstructed the energy eigenvalues them-
selves. The results are illustrated in Fig. 2, in which it
is evident that RPE succeeds in accurately computing
these eigenvalues from pairwise differences. All Hamilto-
nian (and k,) dependence was precompiled into two- or
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FIG. 2. Verification of RPE for evaluating energy differences
in a molecule. (Top) The first four energy levels of Hs in a
minimal basis, as calculated using RPE on IBM Vigo (dots)
and diagonalization on a classical computer (lines). (Bottom)
The error in the first four energy levels relative to the result
evaluated on a classical computer.

three-CNOT circuits for this two-qubit demonstration,
leading to k4-independent depth circuits of at most 11
CNOTs [55]. We remark that this precompilation ap-
proach cannot provide a quantum advantage as it relies
on the Hamiltonian being classically diagonalizable. A
demonstration without precompilation is likely to require
non-trivial quantum hardware improvements.

However, by compiling into constant-depth circuits we
are able to verify that our protocol achieves the ideal
scaling with k,. This is illustrated in Fig. 3, in which
we also compare the experimentally observed scaling to
that predicted by circuit simulations with and without
noise. Our noisy simulations are based upon calibration
data furnished by IBM at the time of the experiment.
The noiseless simulations provide a benchmark for the
optimal performance of our circuits, with the noisy sim-
ulations suggesting that experiment will realize a rela-
tively small deviation from this. The fact that the ex-
periment realizes a mean error that scales with 1/29 in-
dicates that we are choosing the correct branch between
successive generations, even using noisy hardware. How-
ever, the fact that the noisy simulations predict errors
that are almost an order of magnitude smaller than those
that are experimentally observed suggests that the fur-
nished noise model is insufficient to predict actual hard-
ware behavior, highlighting both the utility of more ex-
pressive noise models [56] and the relatively loose rela-
tionship between average gate infidelities and worst-case
error rates [32, 57]. Nevertheless, that the procedure still
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FIG. 3. Simulated and experimental distributions of errors in
the Ha energy calculation with 1024 repetitions per circuit.
A swarm plot with errors from all internuclear separations
and energy differences, for each generation of RPE. Exper-
imental results on IBM Vigo are compared to results from
circuit simulations without noise and using the calibration-
based noise model supplied by IBM. Scaling of the error with
1/29 is observed, consistent with Heisenberg-like scaling and
indicating that the correct branch is predominantly chosen in
these sequences.

works in the presence of “hidden” error processes also
highlights RPE’s resilience to such “hidden” errors.

Finally, we illustrate the denominative robustness of
RPE to SPAM errors. Fig. 4 presents a particular two-
dimensional slice of our error model in which &, = & and
& = & vary. All other parameters of the model are opti-
mized to produce a worst-case bound on the additive er-
ror in Fig. 3. This worst-case additive error is then com-
pared to the upper bound for which the success of RPE is
guaranteed. We find that for & = &, = 0, RPE can tol-
erate a probability of leakage out of the target subspace
in each of the preparation and measurement circuits up
to ~ 9%. The sensitivity to coherent state preparation
errors within the target subspace is apparently higher,
only tolerating individual coherent error probabilities of
just ~ 4%, partially due to the selection of worst-case
phase error within that subspace (&p).

Conclusion.— We have adapted RPE from its original
application in efficiently estimating the phase of a single-
qubit gate to efficiently estimating energy differences in
quantum simulation. This approach to phase estimation
does not require any auxiliary qubits or controlled imple-
mentations of W(H). While approaches using auxiliary
qubits benefit from projection into an energy eigenstate
after each round, we have shown that RPE is tolerant
to errors in SPAM. We expect the long-term utility of
such a protocol to be eclipsed by auxiliary-qubit-based
approaches in future fault-tolerant quantum computers.

Upper bound on |dx|/7
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FIG. 4. Robustness against SPAM errors. The maximum ad-
ditive error in the measured angle A\ used in the RPE proto-
col, |8x], is plotted as a scaled function of the strength of state
preparation errors within (&) and outside (&) of the target
subspace (see SM for derivation). We have set & = £ and
= & = & to get a two-dimensional slice of the error bound
in the four-dimensional parameter space. The upper limit for
RPE protocol success, [dx| < %, is plotted as a white line [51].
The region below this line corresponds to conditions for which
RPE will succeed in spite of coherent SPAM errors. Values
of |[6x] > & are plotted in black.

However, we expect this approach to be impactful in the
intermediate-term.  Specifically, for verifying and vali-
dating quantum simulation algorithms in the era between
the noisy, intermediate-scale quantum present and the
fault-tolerant quantum error corrected future.

The in-between epoch in which we expect RPE to be
most useful is one in which the capabilities of quantum
computers will be typified by a number of features. A
few error-corrected logical qubits might be available, but
with logical error rates and connectivities that are suffi-
ciently limited that the implementation of one-to-many
controlled W(H) is not possible for the desired preci-
sion. There might also be sufficiently few logical qubits
that it is possible to classically diagonalize the Hamilto-
nian over a particular subspace, in which case straight-
forward compilation of the state preparation unitaries
will be possible. Finally, RPE might be useful in diag-
nosing adiabatic state preparation algorithms which rely
on finding a pathway between a non-interacting and in-
teracting Hamiltonian in which the ground/first-excited
state gap remains as large as possible. As RPE allows us
to efficiently evaluate this gap with limited resources, we
see this as a promising application.

Authors’ note.— While this paper was under review the

authors became aware of two contemporaneous results
involving phase estimation without auziliary qubits [58,
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