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We present a combined experimental and theoretical study of the mineral atacamite Cu2Cl(OH)3.
Density functional theory yields a Hamiltonian describing anisotropic sawtooth chains with weak 3D
connections. Experimentally, we fully characterize the antiferromagnetically ordered state. Mag-
netic order shows a complex evolution with the magnetic field, while, starting at 31.5 T, we observe
a plateau-like magnetization at about Msat/2. Based on complementary theoretical approaches, we
show that the latter is unrelated to the known magnetization plateau of a sawtooth chain. Instead,
we provide evidence that the magnetization process in atacamite is a field-driven canting of a 3D
network of weakly coupled sawtooth chains that form giant moments.

Frustrated low-dimensional quantum spin systems of-
fer a unique opportunity to study complex quantum
phases [1–4]. In the search for novel and exotic ground
and field-induced states, such as spin liquids, magnetiza-
tion plateaus or nematic phases, a multitude of models
have been studied, including the kagome lattice, the di-
amond chain or the frustrated J1-J2 chain [5–7]. Exper-
imental efforts to identify materials to test these theo-
retical concepts are exemplified by work on natural min-
erals such as herbertsmithite, azurite or linarite [8–13].
Through this combined effort a new level of insight into
complex topics of quantum magnetism is achieved.

The ∆-, or sawtooth chain represents one of the fun-
damental models of frustrated quantum magnetism. It
consists of a chain of spin triangles, with the Hamiltonian

H =
∑
i

JSi ·Si+2+J ′
(
Si ·Si+1+Si+1 ·Si+2

)
−h·Si. (1)

Si represents a spin S = 1/2 at site i; the sites i and i+2
are neighbors in the chain “spine”, while J ′ is the inter-
action between spine sites and the sawteeth tips. h is the
external magnetic field. This model has been studied the-
oretically for decades [14–34]. Real materials, however,
are inevitably more complex than this simplified model.
Delafossite and euchroite have more than two relevant
couplings [35, 36], certain metalorganic systems have a
ferromagnetic intra-spine J [27, 37], and in Rb2NaTi3F12

the ∆-chain is coupled to an antiferromagnetic (AFM)
chain [38]. In this Letter, based on a combined experi-
mental and theoretical study of atacamite, Cu2Cl(OH)3,

we show that its magnetic behavior originate from an in-
tricate and rather unusual 3D connectivity of ∆-chains,
not previously addressed.

We have measured magnetization, magnetic suscepti-
bility and specific heat of atacamite in fields up to 13 T.
Neutron scattering was carried out at the HZB BER II
reactor using the instruments E2, E5 and HFM/EXED
for fields up to 25 T [39–41]. We have determined both
the magnetic and crystallographic structures of our min-
eral single crystals [42, 44–46]. In addition, we have per-
formed a high-field magnetostriction and magnetization
study in fields up to 65 T at the Pulsed Field Facility of
the NHMFL, Los Alamos. In the present work, we fo-
cus on data taken in magnetic fields applied along the
crystallographic b axis.

Atacamite magnetically orders at low temperatures
and we found a complex field-induced spin reorienta-
tion behavior. Magnetic fields of ∼ 30 T suppress the
ordered state, taking the system to nearly half its satu-
ration magnetization, where it persists up to the high-
est field reached in this study. To rationalize these
results, we have investigated the electronic structure
and magnetic interactions using Density Functional The-
ory (DFT) with full potential local orbital (FPLO) ba-
sis [47] and generalized gradient approximation (GGA)
functional [48]; electronic correlations on Cu2+ were ac-
counted for by the GGA+U method [49]. The Hamil-
tonian thus obtained consists of strongly coupled Cu ∆-
chains, forming a weakly coupled network. We consider
the uncoupled chains in a magnetic field using infinite
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FIG. 1. (color online) (a) Crystal structure of atacamite Cu2Cl(OH)3. (b) Visualization of the dominant magnetic exchange
paths in atacamite forming a sawtooth pattern. Also shown is the magnetic structure together with the nuclear and the
magnetic unit cell (black solid lines). (c) Cu-Cu exchange couplings of atacamite, Ji, with i = 1, 2, . . . denoting first, second,
. . . neighbor. The vertical line indicates the U value at which the couplings J1 = 1.3 K, J2 = −9.6 K, J3 = 102 K, J4 = 336 K,
J11b = 15.6 K, J13 = 1.1 K match the experimental Curie-Weiss temperature; for details see text.

system time-evolving block decimation (iTEBD) [50] as
well as exact diagonalization (ED). The results justify
our subsequent evaluation of the magnetization process
within a 3D mean-field approximation (MFA), and ac-
counting for the inter-chain coupling.

Atacamite Cu2Cl(OH)3 crystallizes in a Pnma or-
thorhombic structure (lattice constants a = 6.02797 Å,
b = 6.86383 Å, c = 9.11562 Å; Fig. 1 (a)) [42, 51, 52].
There are two inequivalent Cu sites (dark (Cu(1)) and
light (Cu(2)) blue spheres). Previously, this crystal struc-
ture was derived from a network of pyrochlore tetrahedra
built up by Cu2+ ions [52–54]. Our DFT calculations,
however, indicate that the symmetry of the magnetic
Hamiltonian is dramatically lower than the one antici-
pated from the bond lengths only. Indeed, the bonds
derived from the 1st, 2nd and 3rd pyrochlore coordina-
tion shells vary in length by ±10% within each set, but
the calculated exchange parameters (corresponding to 4,
6 and 7 distinct Cu-Cu distances, respectively), vary by
two orders of magnitude. As we show below, our calcu-
lated Hamiltonian provides an excellent explanation of
the experimental observations.

First evidence of the existence of ordered magnetism in
atacamite was reported previously [40, 52–54]. Further-
more, we present zero-field specific heat measurements,
with an anomaly indicating a magnetic transition at
TN = 8.4 K (Fig. 2 (a)). An antiferromagnetic anomaly
is also observed at TN = 8.4 K in the low-field (0.1 T)
susceptibility as maximum in d(χT )/dT (Fig. 2 (b)) [55].
In neutron diffraction, we find magnetic intensity below
a slightly higher TN = 8.9 K with a magnetic propagation
vector q = (1/2, 0, 1/2) (Fig. 2 (c)).

We also detect an additional hump in the specific heat

at T ∼ 5 K (Fig. 2 (a)) hinting at a more complex tem-
perature evolution of the magnetic state, involving, for
instance, spin reorientations. A calculation of the mag-
netic entropy from our data (ignoring a phonon contri-
bution) gives a value ∼ 0.65R ln(2) at TN [42]. Such a
small value is typical for magnetically ordered states in
frustrated magnets with the magnetic entropy being dis-
tributed over the temperature scale set by the dominant
coupling strengths, here J4 and J3 (Fig. 1 (c)).

In magnetic fields H ‖ b, the features in the specific
heat and the susceptibility are shifted to lower temper-
atures and the AFM anomaly is sharpened (Fig. 2 (a)–
(b)). This shift is supported by neutron scattering in
6.5 T (Fig. 2 (c)). Field-dependent neutron scattering
at the HFM/EXED instrument yields a suppression of
AFM order at 24 T (T = 3.5 K) (Fig. 2 (d)). Altogether,
an external magnetic field leads to a suppression of the
AFM phase, with TN fully suppressed in ∼ 30 T.

The low-T susceptibility in high fields is larger than in
low fields (Fig. 2 (b)). It reflects a metamagnetic transi-
tion occurring at a few Tesla (see below). Since for the
other crystallographic directions we find no such transi-
tion, it suggests that the b axis is the easy magnetic axis
and this is a spin-flop transition [42]. This is consistent
with our refined magnetic structure.

From the magnetic Bragg peak intensities, we de-
rive the magnetic structure in Fig. 1 (b) [42, 56].
On the Cu(1) site, the ordered magnetic moments of
0.34(4)µB are arranged in a nearly perfect AFM pat-
tern with the Cartesian components µord,Cu(1)(x, y, z) =
[0.09(9), 0.04(2), 0.32(7)] µB. The ordering vector corre-
sponds to alternating signs for the x and z moment com-
ponents, while the y component stays the same within
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FIG. 2. (color online) (a) Specific heat cp/T , (b) magnetic
susceptibility χ, and normalized intensity of the (1/2 0 1/2)M
neutron scattering reflection as function of (c) temperature
and (d) magnetic field (H ‖ b axis). Data in (b) are shifted
for clarity by values denoted in the plot; lines in (d) are guides
to the eye, dashed line indicates the plateau field.

the same chain. The angle between two Cu(1) neighbors
is thus θ = 166.3◦, close to 180◦. All Cu(2) sites carry a
moment µord,Cu(2)(x, y, z) = [0, 0.59(2), 0] µB where mo-
ments are parallel to y within one set of sawtooth sites
of a single chain (details in Ref. [42]).

To assess the magnetic phase diagram, we used mag-
netometry in pulsed magnetic fields for H ‖ b [57, 58].
In Fig. 3 (a)–(b) we summarize the magnetostriction
and magnetization, respectively. Below TN and fields
of µ0H1 . 4 T, a kink in the magnetization indicates
a spin-flop transition. When increasing temperature the
kink becomes weaker and shifts to higher fields in the
AFM phase [42]. For temperatures below ∼ 5 K, a weak
shoulder appears (inset Fig. 3 (b)), which corresponds to
shallow minima in the magnetostriction [42]. This might
indicate a splitting of the spin-flop transition due to a
weak three-axes exchange anisotropy.

Immediately after the spin-flop transition, M(H)
grows linearly with dM/dH ≈ 0.013µB/T, but starts
bending upwards up to a field of µ0H2 = 31.5 T, where
the slope reaches 0.042µB/T (Fig. 3 (b)). After that,
a wide magnetization plateau-like behavior at about
0.45µB/Cu sets in. The plateau, also detected in the
magnetostriction (Fig. 3 (a)), reaches up to highest mea-
sured fields and is not perfectly flat, but rising at a rate
of 0.001µB/T.

From our data, we construct the magnetic phase dia-
gram of atacamite for H ‖ b (Fig. 4). The AFM phase
exists below TN and up to ∼ 30 T. It is separated into
a low-field regime with the magnetic structure described
before and a high-field regime for fields above the spin-
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FIG. 3. (color online) (a) Magnetostriction and (b) magneti-
zation of atacamite in magnetic fields H ‖ b axis at different
temperatures. (c) Magnetization versus h via iTEBD for the
∆-chain for different J ′/J at T = 0. Note that for J ∼ 336 K,
a unit of h corresponds to ∼ 250 T. Inset: Magnetization
at J ′/J = 0.3 for max. Schmidt rank χm = 80 (100) lines
(crosses) and imaginary time τ = nτdτ , dτ = 0.01/J . (d)
MFA for 3D coupled ∆-chains.

flop transition. In the limit T → 0 K, the suppression
of AFM order possibly coincides with the appearance of
a magnetization plateau-like behavior. To fully estab-
lish the magnetic phase diagram in this field region, it
requires a determination of the magnetocaloric effect in
pulsed magnetic fields [59, 60]. At highest fields of 65 T
the system is still far from saturation.

It is now instructive to establish the Hamiltonian of
atacamite and connect it to the observations. To this
end, we used an energy mapping technique [61–63] to
calculate 17 exchange interactions, derived from the first
three coordination shells of the parent pyrochlore struc-
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FIG. 4. (color online) Magnetic phase diagram of atacamite
for H ‖ b; for details see text. Data points at 31.5 T
from pulsed-field experiments as measured, not corrected for
MCE [60].

ture [42]. Only six of them exceed 1 K, or 0.3% of the
dominant coupling J4 (Fig. 1 (c)). A Curie-Weiss tem-
perature ΘCW calculated from our Js for U = 8.24 eV,
typical for Cu2+, matches the experiment [40, 52]. Two
antiferromagnetic interactions stand out: J4 = 336 K and
J3 = 102 K, which bind Cu(1) and Cu(2) atoms into
anisotropic ∆-chains (compare Eq. (1) with J ≡ J4 and
J ′ ≡ J3).

Based on these findings, we consider a single ∆-chain
(Eq. (1)). Fig. 3 (c) shows iTEBD results, complemen-
tary ED results are described in [42]. For 0.5 ≤ J ′/J ≤
2 we observe the famous quantum half-magnetization
plateau [26, 28, 64]. However, it is practically invisible
for J ′/J . 0.5, relevant for atacamite. Moreover, its field
scale is of O(J) ∼ O(250 T). Therefore, while tempting,
the observed flattening of M(H) around 31.5 T in ata-
camite is not related to the half-magnetization plateau
physics. On the other hand, the 3D exchange among
the chains proves to be relevant. The second finding
in Fig. 3 (c) is far more striking and has not been ap-
preciated before: in the small-J ′ gapless phase, e.g., at
J ′/J = 0.5, the low-h susceptibility appears singular
and the magnetization approaches a non-quantized fi-
nite value as h → 0. For the relevant J ′/J ∼ 0.3, the
inset of Fig. 3 (c) shows iTEBD versus increasing imagi-
nary simulation times τ = nτdτ in terms of dτ = 0.01/J .
Since iTEBD inherits the limit of system size N → ∞
by construction, and by identifying τ−1 ∼ T with a
quasi-temperature, we extract the following order of lim-
its limh→0 limN→∞〈Sz〉T := M0(T ) from the inset. For
T 6= 0, we find M0(T ) = 0, however as T → 0, very likely,
M0(T = 0)/cell ≈ 0.435 6= 0, all of which is consistent
with Mermin-Wagner’s theorem. Rephrasing, we seem
to observe ferromagnetic order at T = 0 for the ∆-chain
at J ′/J ∼ 0.3. This likely holds for the entire small-J ′

gapless phase. This is consistent with ED [42] and with
a classical treatment of the ∆-chain.

In the MFA, the ground state of a single ∆-chain
has the same pattern as observed experimentally, with

θ = 360◦ − 2 arccos
(
− J′

2J

)
= 162.5◦, in excellent agree-

ment with our neutron data, with the Cu2+ net mo-
ment, Meff = (M2 − M1J

′/2J)/2 [42]. If the moment
of each copper is taken to be M2 = M1 = 1µB, then
MMFA

eff = 0.42µB. We know from experiment though
that these moments are suppressed by fluctuations to
M1 = 0.34µB, M2 = 0.59µB. This reduces the net mo-
ment to Meff(H = 0) = 0.27µB/Cu [42]. On the other
hand, MMFA

eff = 0.42µB agrees very well with the magne-
tization at ∼ 30 T, indicating that in such fields the fluc-
tuations are mostly quenched. In the following we used
Meff(H) and M1,2(H) linearly interpolating between the
two limits.

We are now in a position to describe an effective 3D
magnetic model that can be addressed by classical mean-
field calculations. These treat the ∆-chains as emer-
gent, rigid macroscopic objects, carrying a large magnetic
moment. Classically, the latter arises primarily from
Cu(2) moments being aligned ferromagnetically along b
(Fig. 1 (b)). These large moments are AFM stacked into
a 2D crystal and coupled via the small subleading ex-
change interactions. Their projection onto the ac plane
forms an anisotropic triangular lattice with three effec-
tive AFM couplings, JB . JA � JC [42]. For our se-
lected value of U = 8.24 eV, JC ≈ 8 K, JA ≈ 0.5 K and
JB ≈ 0 K. The classical ground state of this model is
collinear with Néel order along C and B, and FM order
along A, as observed experimentally (Fig. 1 (b)). We
note, however, that JA,B rapidly rise with decreasing U ,
and at U = 7 eV (still an admissible value for Cu2+)
JA ≈ JB ≈ JC ≈ 10 K. In that case, the MFA ground
state would have been the 120◦ order.

We focus on the 2D collinear Néel order along the C
direction. Since b is the easy axis, the MFA predicts a
spin-flop at low fields H ‖ b, whereupon all magnetic mo-
ments rigidly rotate so that the Cu(2) moments are ⊥ H.

The classical spin-flop field is µ0H1 = M2(0)
Meff (0)

√
2KJ∆−∆,

where K measures the uniaxial anisotropy (given here for
simplicity as an effective single-site term), and the effec-
tive coupling J∆−∆ ≈ JC + JB ≈ 8.5 K for U = 8.24 eV.
To reproduce the experimentally observed µ0H1 ∼ 3.5 T
one needs K ∼ 0.04 K (a typical energy scale for
Cu2+ [65]). The low symmetry of atacamite allows also
for some in-plane magnetic anisotropy. A possible split-
ting of H1 into two close transitions likely reflects such
anisotropies.

As the field increases, the spin-flopped state grad-
ually cants, generating a net magnetic moment of
HM2

eff(H)/M2
2 (H)J∆−∆. In an uncorrected MFA,

M(H) is linear. However, accounting for quantum fluc-
tuations and their gradual quenching with field leads to
deviation from linearity. These deviations are visible in
experiment [42]. At a field H2 the moments cant into the
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“plateau” configuration, where all ∆-chains are ordered
ferromagnetically, and the total moment is M = MMFA

eff .
For our calculated parameters, µ0H2 = 30.1 T, to be
compared to the experimental value of 31.5 T. In this
state, the total moment does not remain constant but
keeps rising as Meff(H) = (1/2−J ′/4J +H/4J)µB. The
differential susceptibility dM/dH, calculated this way, is
much smaller than in the experiment, yet is qualitatively
consistent with the latter [42].

The overall dependence ofM(H) as calculated in MFA,
adjusted for the quenching of the fluctuations, and using
the DFT exchange couplings, exhibits an excellent agree-
ment with the experiment (Fig. 3 (d)), giving credence
to the calculation and to the described scenario.

Finally, let us discuss the finite-T phase diagram. Since
temperature effects might slightly change the ratios be-
tween JA, JB, JC, we note that a tuning towards the
region JA ≈ JB ≈ JC opens the possibility of multiple
phases with various degrees of non-collinearity, some of
them only emerging at finite temperatures [2]. While our
current observations do not yield hints as to the specific
nature of this phase, we note that the phase diagram for
the simple isotropic triangular lattice is similar to our
Fig. 4 (see Fig. 3 in Ref. [2]). This is a subject for future
investigations.

We have studied the natural mineral Cu2Cl(OH)3 and
found that it is well described as a weakly coupled asym-
metric triangular lattice of S = 1/2 ∆-chains. We find
an unusual magnetic behavior, with a magnetization de-
ceivingly reminiscent of the quantum half-magnetization
plateau, which however turns out to be a classical effect,
well described by MFA. A magnetic Hamiltonian derived
from first-principles calculations predicts a spin flop,
a magnetization plateau, and weak deviation from the
plateau behavior in high fields. This compound therefore
represents a unique example of strongly-coupled 1D fer-
romagnetic objects coordinated by weak and anisotropic
2D interactions. We hope that this discovery will encour-
age more studies of this class of magnetic models.
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