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Abstract

We report precision measurements of the gradient of the Casimir force between an Au-coated

sphere and graphene sheet deposited on a silica plate. The measurement data are compared with

exact theory using the polarization tensor found in the framework of the Dirac model including

effects of the nonzero chemical potential and energy gap of the graphene sample with no fitting

parameters. The very good agreement between experiment and theory demonstrates the unusually

big thermal effect at separations below 1 µm which has never been observed for conventional 3D

materials. Thus, it is confirmed experimentally that for graphene the effective temperature is

determined by the Fermi velocity rather than by the speed of light.
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Over the last two decades special attention has been given to graphene which is a 2D sheet

of carbon atoms packed in a hexagonal lattice. The quasiparticles in graphene are either

massless or very light. At energies up to a few eV they are well described by the relativistic

Dirac equation in 2+1 dimensions where the speed of light c is replaced with the Fermi

velocity vF ≈ c/300 [1–3]. As a result, graphene offers many advantages over conventional

materials with regard to its mechanical, electrical, optical, and chemical properties. It

possesses the universal minimum electrical conductivity, low absorbance in the range from

visible to infrared light and extremely high mechanical strength [1–3].

One more outstanding feature is an unusually big thermal correction to the Casimir force

between two parallel graphene sheets spaced at separations below 1 µm which was predicted

by G. Gómez-Santos [4]. In general, the Casimir force [5] acts between any two closely

spaced surfaces. It is a generalization of the commonly known van der Waals force [6] taking

into account the finite speed of light. Both forces are of entirely quantum nature. They

are caused by the zero-point and thermal fluctuations of the electromagnetic field. Since

fluctuations have a profound impact in many physical phenomena, the Casimir effect has

gained recognition as one of the multidisciplinary areas of current research (see, e.g., the

reviews [7–11] and monographs [12–18]).

The Casimir force is described by the fundamental Lifshitz theory [19, 20]. The force

value at temperature T can be presented as the zero-temperature contribution plus a thermal

correction. For two parallel plates made of 3D materials spaced at separations a < 1 µm,

T = 300 K the thermal correction to the Casimir force is very small and is not yet measured.

The reason is that T ≪ Teff = ~c/(2akB) ≈ 1140 K at a = 1 µm. It becomes equal to

a sizable fraction of the force only at separations of a few micrometers where the force

itself is too small. It should be noted that a metal described by the Drude model is an

exception [21], but the few percent thermal effect predicted in this case at a < 1 µm was

unambiguously excluded experimentally [22, 23]. There is an extensive literature regarding

the reasons for this exclusion but the problem remains as yet unresolved [8, 11, 16, 23] (see

also a recent overview and a novel approach in Ref. [24]). Quite apart from the case of 3D

bodies, according to the prediction of Ref. [4], for two pristine graphene sheets (undoped

and with massless quasiparticles) the thermal correction to the Casimir force at T = 300 K

becomes large even at separations of tens of nanometers. This is because for graphene

T
(g)
eff = ~vF/(2akB) ≈ Teff/300 [4]. By introducing the thermal photon wavelength λT =
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2π~c/(kBT ) ≈ 4.8 µm at T = 300 K, one finds that for a pristine graphene the high-

temperature regime takes place at a > λT/(1200π) ≈ 1.3 nm.

In this Letter, we present the measurement results for the gradient of the Casimir force

between an Au-coated microsphere and a graphene sheet deposited on a silica glass (SiO2)

plate obtained in high vacuum using an atomic force microscope (AFM) operated in the

dynamic regime. Although for two parallel graphene sheets suspended in a vacuum the

thermal correction at short separations reaches several tens percent of the Casimir force [4,

25], this configuration is experimentally not feasible. In the previously performed experiment

[26] using a graphene sheet deposited on a SiO2 film covering a Si plate, the gradient of the

Casimir force was measured and found in good agreement with theory [27]. However, the

thermal effect could not be discriminated because the charge carrier concentration in a Si

plate was burdened with a large error and the used theory did not take into account that

real graphene samples are unavoidably doped. In the present experiment, an improved

AFM setup and a much thicker SiO2 substrate (as suggested in Ref. [28]) are used. We have

also removed the Si plate and made a comparison with exact theory taking into account

the nonzero chemical potential and energy gap of the graphene sample. As a result, the

measured gradients of the Casimir force were found to be in a very good agreement with

theory and the thermal effect was reliably demonstrated in the separation range from 250

to 590 nm where it constitutes from 4% to 10% of the total force gradient.

The Casimir force gradient measurement system consists of a tipless AFM cantilever [29]

whose spring constant was reduced through chemical etching before use. The corresponding

cantilever resonant frequency was decreased from 5.7579 × 104 to 3.5286 × 104 rad/s by

etching for 100 s in 60% KOH solution at 75◦C with stirring. The cantilever was washed in

BOE solution and DI water for 1 min each prior to etching. The etching process reduced

the spring constant of the bare cantilever to 0.008327 N/m. As in previous experiments, a

hollow glass microsphere was next attached to the end of the cantilever using silver epoxy

and then coated with Au. The thickness of the Au coating and the diameter of the coated

sphere were measured to be 120± 3 nm and 120.7± 0.1 µm using an AFM and a scanning

electron microscope, respectively. The rms roughness of the Au coating was measured to

be δs = 0.9± 0.1 nm. The resonant frequency of the complete Au coated cantilever-sphere

system was measured in vacuum to be ω0 = 6.1581× 103 rad/s.

The large area graphene monolayer [30] originally CVD grown on a Cu foil was transferred
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onto a polished JGS2 grade fused silica double side optically polished substrate of 100 mm

diameter and thickness of 500 µm [31] through an electrochemical delamination procedure

[30, 32]. A 1 × 1 cm2 piece of the graphene coated fused silica wafer was then cut from

the large sample and used in the experiment. The roughness of the graphene on the fused

silica substrate was measured using an AFM to be δg = 1.5±0.1 nm after the force gradient

measurements.

The graphene impurity concentration was determined after the Casimir force gradient

measurement utilizing Raman spectroscopy, which was carried out using a Horiba Labram

HR 800 system with 532 nm laser excitation (Laser Quantum, 65 mW power). A 100x

objective lens with NA = 0.9 was used, which leads to a laser spot size of ∼ 0.4 µm2 (i.e., of

709 nm diameter). Experiments were performed at T = 294± 0.5 K. A 600 l/m grating was

used to ensure the spectral range of interest (from 1450 cm−1 to 2900 cm−1) which includes

both G and 2D disorder peaks of graphene. Before collection of spectra at each position,

the signal intensity was maximized in real-time by adjusting the focus of the microscope,

so that graphene sample was located in the focal plane. The spectrometer calibration was

performed as per manual by reflecting the incident light. Spectral resolution for G peak

identification was measured to be 0.1 cm−1. The spectra collected are integrated results of

10 acquisitions with each acquisition spanning over 10 s. The spectra were fit to Lorentzians

to identify the G-peak. The G-peak value was compared to reported G-peak shifts with

charge concentration in Ref. [33] to identify the impurity concentration in graphene. The

latter was measured at 18 different uniformly distributed locations on the sample to arrive

at an average impurity concentration of n = (4.2± 0.3)× 1012 cm−2 where the random and

systematic errors are summed to obtain the maximum possible value of the total error. The

dominant impurity chemical type was Na resulting from the transfer process used [30]. The

respective zero-temperature value of the chemical potential for our sample is given by [34]

µ = ~vF
√
πn = 0.24± 0.01 eV. This value is relatively large and, thus, almost independent

of T [35]. Regarding the energy gap ∆, for graphene on a SiO2 substrate its values vary

between 0.01 and 0.2 eV [36–40].

Specifics of the vacuum chamber setup have been reported in detail in previous publica-

tions [41–44]. The schematic is provided in Fig. 1 of Ref. [44]. The fused silica-supported

graphene sample and gold sphere probe were loaded into the vacuum chamber which was

pumped down to below 9 × 10−9 Torr using an oil free scroll pump and turbo pump prior
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to the force gradient measurements. Due to the sensitive nature of the graphene sample,

the UV/Ar-ion radiation treatment used in previous experiments [42–45] for cleaning the

Au surfaces was not implemented to avoid potential damage to the atomic layer graphene.

The cantilever oscillation frequency and motion of the graphene surface were monitored by

two fiber interferometers with 1550 nm and 500.1 nm laser light sources, respectively. A

small separation distance change originating from mechanical drifts during the time span

of the measurements were also taken into consideration. Details of the above mentioned

operations and mechanisms are explained in Refs. [41, 43, 44]. The gradient of the Casimir

force was measured using a dynamic technique, where the force-induced frequency-shift of

cantilever oscillation is directly taken using a phase lock loop (PLL) [41]. The cantilever

oscillation amplitude was maintained at 10 nm and the PLL resolution was measured to be

55.3 mrad/s. To ensure the accuracy of the measurement, the residual potential difference

between the gold and graphene surface was determined through a standard electrostatic

calibration procedure [41, 43, 44].

In the dynamic measurement scheme used here, the total force Ftot(a) = Fel(a) + F (a)

acting on the Au coated sphere, where Fel(a) and F (a) are the electric and Casimir force,

respectively, and a is the separation distance between the sphere and graphene, modifies

the resonant natural frequency of the cantilever-sphere oscillator system. The change in the

frequency ∆ω = ωr − ω0, where ωr is the resonance frequency in the presence of external

force Ftot(a), was recorded by the PLL every 0.14 nm while the graphene plate was moved

towards the grounded sphere starting at the maximum separation. This was repeated with

one of ten different voltages Vi varied between 0.083 and 0.183 V and eleven voltages equal to

the residual potential difference V0 (see below) applied to the graphene using ohmic contacts

while the sphere remained grounded.

The gradients of the total and Casimir forces were found from the measured frequency

shifts using electrostatic calibration. To perform the calibration of the setup, we used an

expression for the electric force in sphere-plate geometry Fel(a) = X(a, R)(Vi − V0)
2. Here,

X(a, R) is a known function [16, 44] and V0 is the residual potential difference between a

sphere and a graphene sheet which is nonzero even when both surfaces are grounded. In the

linear regime realized in our measurement the gradient of the Casimir force is given by [44]

F ′(a) = −
∆ω

C
− (Vi − V0)

2∂X(a, R)

∂a
, (1)
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where C = ω0/(2k) and k is the spring constant of the cantilever. Note that the absolute

separations between the zero levels of the roughness on the sphere and graphene are found

from a = zpiezo + z0, where zpiezo is the graphene plate movement due to the piezoelectric

actuator and z0 is the closest approach between the Au sphere and graphene.

From the position of the maximum in the parabolic dependence of ∆ω on Vi in Eq. (1),

one can determine V0 with the help of a χ2-fitting procedure. From the curvature of the

parabola with the help of the same fit it is possible to determine z0 and C. This was done

at all the graphene-Au sphere separations used in our experiment. In Fig. 1 we present the

values of V0 as a function of separation determined from the fit. The obtained values were

corrected for mechanical drift of the frequency-shift signal, as discussed in Refs. [41, 43, 44].

As can be seen from Fig. 1, the resulting values of V0 do not depend on separation. To

check this observation, we have performed the best fit of V0 to the straight lines V0 = d+ θa

where a is measured in nanometers. It was found that d = 0.1326 V and the slope is

θ = −2.73×10−7 V/nm, i.e., the independence of V0 on a was confirmed to a high precision.

This finally leads to the mean value V0 = 0.1324 V. Next the quantities z0 and C were

determined from the fit at different separations and found to be separation independent.

For our graphene sample the mean values were found to be z0 = 236.9 ± 0.6 nm and

C = (1.464± 0.001)× 105 s/kg. From the measured resonant frequency we have confirmed

that the obtained value of C results in the spring constant k consistent with the value

determined prior to the Au coating of the cantilever.

At each separation, the gradient of the Casimir force was measured 21 times with different

applied voltages mentioned above. The mean values of the gradient of the Casimir force were

found from Eq. (1) with a step of 1 nm. The random errors of the mean were determined at a

67% confidence level and combined in quadrature with the systematic errors which are mostly

determined by the errors in measuring the frequency shifts. The obtained measurement data

for F ′

expt(a) with their errors are shown in Fig. 2 as crosses where ∆a = 0.6 nm [for visual

clarity in Fig. 2(a) all data points are indicated whereas in Figs. 2(b,c) each second data

point and in Fig. 2(d) only each third one are shown].

Now we compare the measurement results with theory. In Ref. [4], the Casimir force

in graphene systems was calculated using the density-density correlation functions in the

random-phase approximation (see also [46]). This formalism is equivalent to the nonre-

tarded version of the Lifshitz theory (in so doing, the relativistic effects were shown to be
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insignificant [4]). Here, we use the relativistic version of the Lifshitz formula with reflec-

tion coefficients expressed via the exact polarization tensor of graphene in the framework

of the Dirac model taking into account the nonzero energy gap ∆ and chemical potential

µ [47–50]. Note that even at the shortest separation considered (a = 250 nm) the charac-

teristic energy of the Casimir effect ~ωc = ~c/(2a) = 0.4 eV is well within the application

region of the Dirac model. Because of this the absorption peak of graphene at λ = 270 nm

(~ω = 2π~c/λ ≈ 4.59 eV) does not influence the obtained results. Then, using the proximity

force approximation (PFA) [16], the gradient of the Casimir force acting between a Au sphere

of radius R and a graphene-coated SiO2 plate spaced at the separation a at temperature T

is given by [25, 27]

F ′(a, T ) = 2kBTR

∞
∑

l=0

′
∫

∞

0

qlk⊥dk⊥

×
∑

α

[

r−1
α (iξl, k⊥)R

−1
α (iξl, k⊥)e

2aql − 1
]−1

. (2)

Here, the prime on the summation sign in l divides the term with l = 0 by 2, k⊥ is the

magnitude of the wave vector projection on the graphene, ξl = 2πkBT l/~ are the Matsubara

frequencies, ql =
√

k2
⊥
+ ξ2l /c

2, and the summation in α is over the transverse magnetic

(α = TM) and transverse electric (α = TE) polarizations of the electromagnetic field (note

that the thicknesses of Au coating and SiO2 plate allow consideration of a sphere as all-gold

and a plate as a semispace [16]). The reflection coefficients rα on the boundaries between

Au and vacuum and Rα between vacuum and graphene-coated plate are given by [25, 27, 51]

rTM(iξl, k⊥) =
ε
(1)
l ql − k

(1)
l

ε
(1)
l ql + k

(1)
l

, rTE(iξl, k⊥) =
ql − k

(1)
l

ql + k
(1)
l

,

RTM(iξl, k⊥) =
~k2

⊥
(ε

(2)
l ql − k

(2)
l ) + qlk

(2)
l Π00,l

~k2
⊥
(ε

(2)
l ql + k

(2)
l ) + qlk

(2)
l Π00,l

,

RTE(iξl, k⊥) =
~k2

⊥
(ql − k

(2)
l )− Πl

~k2
⊥
(ql + k

(2)
l ) + Πl

, (3)

where ε
(n)
l = ε(n)(iξl) with n = 1, 2 are the dielectric permittivities of Au and SiO2, respec-

tively, and k
(n)
l =

√

k2
⊥
+ ε

(n)
l ξ2l /c

2. The components of the polarization tensor of graphene

are Πβγ,l ≡ Πβγ(iξl, k⊥, T,∆, µ), where β, γ = 0, 1, 2, and the combination of these compo-

nents Πl is defined as

Πl = k2
⊥
Π β

β, l − q2l Π00,l. (4)
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It is convenient to present the quantities Π00,l and Πl in the form

Π00,l = Π
(0)
00,l +Π

(1)
00,l, Πl = Π

(0)
l +Π

(1)
l , (5)

where the first contributions describe undoped graphene (µ = 0) with a nonzero energy gap

(∆ = 2mv2F , m is the mass of quasiparticles) at T = 0 but with ω = iξl, and the second

ones take into account an explicit dependence of the polarization tensor on T and µ. It has

been shown that [47, 48]

Π
(0)
00,l =

α~k2
⊥

q̃l
Ψ(Dl), Π

(0)
l = α~q̃lΨ(Dl), (6)

where q̃l =
√

v2Fk
2
⊥
+ ξ2l /c, α = e2/(~c) is the fine structure constant, Ψ(x) = 2[x + (1 −

x2) arctan(x−1)], and Dl = ∆/(~cq̃l).

The exact expressions for Π
(1)
00,l and Π

(1)
l can be found in Refs. [50, 51]

Π
(1)
00,l =

4α~c2q̃l
v2F

∫

∞

Dl

du

(

∑

κ=±1

1

e
Blu+κ µ

kBT + 1

)

×
[

1− Re
1− u2 + 2iγlu

(1− u2 + 2iγlu+D2
l − γ2

l D
2
l )

1/2

]

,

Π
(1)
l = −

4α~q̃lξ
2
l

v2F

∫

∞

Dl

du

(

∑

κ=±1

1

e
Blu+κ µ

kBT + 1

)

×
[

1− Re
(1 + iγ−1

l u)2 + (γ−2
l − 1)D2

l

(1− u2 + 2iγlu+D2
l − γ2

l D
2
l )

1/2

]

, (7)

where γl ≡ ξl/(cq̃l) and Bl ≡ ~cq̃l/(2kBT ).

The values of ε
(n)
l where obtained [8, 16] by means of the Kramers-Kronig relation using

the tabulated optical data for Au and SiO2 [52]. Note that due to the smallness of the

reflection coefficient RTE(0, k⊥) the values of force gradients are almost independent of the

type of extrapolation of the available optical data for Au down to zero frequency.

The gradients of the Casimir force computed by Eqs. (2)–(7) at T = 294 K were corrected

(a fraction of 1% effect) for the presence of surface roughness [8, 16]

F ′

theor(a, T ) =

(

1 + 10
δ2s + δ2g

a2

)

F ′(a, T ). (8)

The same computations have been repeated at T = 0 when the summation on l in

Eq. (2) is replaced with integration (the explicit expressions for Π00(iξ, k⊥, 0,∆, µ) and

Π(iξ, k⊥, 0,∆, µ) are contained in Ref. [51]).
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The computational results for the boundaries of allowed theoretical bands are shown

in Fig. 2 by the top and bottom pairs of lines computed at T = 294 K and T = 0 K,

respectively. These lines were obtained in the following most conservative manner. The

upper lines in both pairs were computed for µ = 0.25 eV, ∆ = 0 eV, whereas the lower lines

— for µ = 0.23 eV, ∆ = 0.2 eV (we recall that with increasing µ and ∆ the force gradient

increases and decreases, respectively). Keeping in mind that the PFA slightly increases the

force gradients, we did not correct the upper lines for the PFA errors but introduced the

maximum possible correction factor of (1 − a/R) to the lower boundary lines [53–57]. The

widths of theoretical bands have also been increased to incorporate errors in the sphere

radius and optical data of Au and SiO2.

As is seen in Fig. 2, the measurement data are in excellent agreement with theoretical

predictions at T = 294K. The unusual thermal effect in the force gradient equal to the

difference between the top and bottom bands is conclusively demonstrated over the region

from 250 to 590 nm. Specifically, at a = 250, 300, 400, 500, and 590 nm the thermal

correction reaches 4%, 5%, 7%, 8.5%, and 10% of the total force gradient, respectively. This

correction is smaller than for a pristine graphene because it is suppressed by the relatively

large value of µ. The thermal correction is contributed by a summation over the T -dependent

Matsubara frequencies and an explicit dependence of the polarization tensor on T as a

parameter. For a pristine graphene both effects contribute almost equally [25]. In our case

a summation over the Matsubara frequencies contributes 70%, 81%, and 88% of the thermal

correction at a = 250, 400, and 600 nm, respectively.

To conclude, we demonstrated the unusual thermal effect in the Casimir force from

graphene at separations below 1 µm. Although similar effects are the subject of consid-

erable literature, they have never been observed in measurements of the Casimir interaction

at short separations. This result is important not only for the fundamental investigations of

graphene and for Casimir physics, but for numerous applications in nanoscale science.
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FIG. 1: The residual potential difference between a Au-coated sphere and a graphene sample is

shown by the dots as a function of separation.
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FIG. 2: The mean gradient of the Casimir force is shown by the crosses as a function of separation.

The top and bottom theoretical bands are computed at T = 294 K and 0 K, respectively (see the

text for further discussion).
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