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Here we propose the Variational Discrete Action Theory (VDAT) to study the ground state prop-
erties of quantum many-body Hamiltonians. VDAT is a variational theory based on the sequential
product density matrix (SPD) ansatz, characterized by an integer N , which monotonically ap-
proaches the exact solution with increasing N . To evaluate the SPD, we introduce a discrete action
and a corresponding integer time Green’s function. We use VDAT to exactly evaluate the SPD in
two canonical models of interacting electrons: the Anderson impurity model (AIM) and the d =∞
Hubbard model. For the latter, we evaluate N = 2 − 4, where N = 2 recovers the Gutzwiller
approximation (GA), and we show that N = 3, which exactly evaluates the Gutzwiller-Baeriswyl
wave function, provides a truly minimal yet precise description of Mott physics with a cost similar
to the GA. VDAT is a flexible theory for studying quantum Hamiltonians, competing both with
state-of-the-art methods and simple, efficient approaches all within a single framework.

Computing the ground state properties of quan-
tum many-body Hamiltonians is a fundamental task in
physics. A common strategy to approximately solve a
Hamiltonian is the use of variational wave functions,
which allows one to find the best solution within some
fraction of the Hilbert space. A generic approach is
to start from some reference wave function and apply
some projector, as in the well known Jastrow[1] and
Gutzwiller[2–4] variational wave functions. A key lim-
itation to such approaches is that they often cannot be
intelligently improved, meaning that it is difficult to in-
crease the searchable region of Hilbert space efficiently.
One approach to address this limitation is tensor net-
work methods[5–7], where some control parameter in-
creases accuracy at some computational cost; but these
approaches have only proven well suited for low dimen-
sional systems.

Here we propose a new class of variational density ma-
trices: the sequential product density matrix (SPD). The
SPD is motivated by the Trotter-Suzuki[8] decomposi-
tion, and is characterized by an integer N . The SPD
provides a paradigm for variational approaches in that
the precision can be systematically improved by increas-
ing N , and it can be applied beyond low dimensions. In
practice, such an ansatz is not useful unless one has a
systematic and efficient approach for evaluating it. Our
key development is the introduction of the discrete ac-
tion theory (DAT) and the corresponding integer time
Green’s function (ITGF), which may be used for eval-
uating an SPD. The DAT has a perfect parallel to the
standard many-body Green’s function formalism, though
with non-trivial differences. Many of the key ideas from
traditional many-body theory can immediately be gen-
eralized to the DAT, such as the Dynamical Mean-Field
Theory (DMFT)[9]. Using the DAT for evaluating the
SPD, we can then perform the variational minimization
to obtain the ground state, and we refer to this en-
tire approach as the Variational Discrete Action Theory
(VDAT). There is companion manuscript to this paper

which provides extensive derivations and minimal exam-
ples to document the foundations of VDAT[10].

Given a Hamiltonian Ĥ = Ĥ0 + V̂ , where Ĥ0 is non-
interacting and V̂ is interacting, we motivate the SPD by
considering the following variational wave function:

exp(γ1Ĥ0) exp(g1V̂ )... exp(γN Ĥ0) exp(gN V̂ )|ϕ0〉, (1)

where γi, gi are variational parameters and |ϕ0〉 is the
ground state wave function of Ĥ0. Equation 1 can be
viewed as a variational application of the Trotter-Suzuki
decomposition[8, 11, 12], where the N → ∞ limit will
cover the exact ground state wave function. The essence
of this ansatz was first proposed several decades ago by
Dzierzawa et. al [13], motivated by the generalization of
the Baeriswyl wave function[14, 15] by Otsuka[16]; and
all of this work was motivated by improving upon the
well known Gutzwiller wave function[2]. More recently,
a unitary version of this wave function was proposed in
the context of quantum computing by Farhi et. al[17],
and further extended by Wecker et. al [18] and Grimsley
et. al [19]. Our SPD further generalizes the idea behind
Eq. 1.

Given a Hamiltonian with L spin orbitals, the SPD is
given as

%̂ = exp (γ1 · n̂) P̂1 . . . exp (γN · n̂) P̂N = P̂1 . . . P̂N , (2)

where P̂τ is a generic interacting projector, and
τ = 1, . . . ,N is the integer time label; exp (γτ · n̂)
is the noninteracting projector, where γτ · n̂ ≡∑L
i=1

∑L
j=1[γτ ]ij [n̂]ij and [n̂]ij = â†i âj ; and P̂τ =

exp (γτ · n̂) P̂τ . When using the SPD as a varia-
tional density matrix, it must be restricted to a Her-
mitian and semi-definite form; and there are two vari-
ants for a given N [10]. It should be noted that the
most general non-interacting projector would include
the terms â†i â

†
j and âiâj , but we presently omit them

for brevity. We also define a non-interacting SPD as
%̂0 = exp (γ1 · n̂) . . . exp (γN · n̂), which will be the start-
ing point for the perturbative expansion of the SPD.
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The variational parameters of the SPD are the γτ and
the parameters within P̂τ . A common choice for the in-
teracting projector is P̂τ = exp(V̂τ ) = exp

(∑
i gτ,iV̂i

)
where

∑
i V̂i = V̂ is some decomposition of the interact-

ing portion of the Hamiltonian, though there are many
possible choices (e.g. as in the Jastrow wave function
for the Hubbard model[1, 20–22]). The SPD brings sev-
eral generalizations over Eq. 1. First, the SPD explicitly
includes all possible variational freedom at the single par-
ticle level, and formally allows for a generic interacting
projector. Second, the SPD form allows for a system-
atic evaluation using the ITGF formalism introduced in
this paper. It is useful to note that N = 1 recovers the
well known Hartree-Fock approximation; N = 2 recovers
the Gutzwiller, Baeriswyl, and Jastrow wave functions,
in addition to unitary and variational coupled cluster
methods[23–26]; and N = 3 recovers the Gutzwiller-
Baeriswyl[16] and Baeriswyl-Gutzwiller[13] wave func-
tions (see [10] for a detailed discussion).

We now introduce the DAT to evaluate the Hamilto-
nian under the SPD at a given set of variational param-
eters. We begin with the ITGF formalism, where the
integer time evolution in the integer time interaction rep-
resentation is given as

ÔI (τ) = ÛI(τ)ÔÛI(τ)−1, (3)

ÛI(τ) = exp (γ1 · n̂) . . . exp (γτ · n̂) , (4)

where τ = 1, . . . ,N . Taylor series expanding the inter-
acting projector, the expectation value of some operator
Ô under the SPD is given as

〈Ô〉%̂ =

∑∞
n=0

1
n! 〈T(

∑N
τ=1 V̂τ,I(τ))nÔI(N )〉%̂0∑∞

n=0
1
n! 〈T(

∑N
τ=1 V̂τ,I(τ))n〉%̂0

, (5)

where the quantum average is defined as 〈Ô〉ρ̂ =

Tr(ρ̂Ô)/Tr(ρ̂); the integer time ordering operator T first
sorts the operators according to ascending integer time
and then according to the position in the original ordering
of operators and finally the result is presented from left
to right; additionally, the resulting sign must be tracked
when permuting operators. It should be noted that our
time convention is opposite to the usual definition[27].
Each term in Eq. 5 can be evaluated via the non-
interacting ITGF

[g0]kτ,k′τ ′ = 〈Tâ†k,I (τ) ak′,I (τ ′)〉%̂0 , (6)

using the integer time Wick’s theorem[10]. In general,
Eq. 5 will require the evaluation of an infinite number
of terms, but if the interacting projector is restricted to
a local subspace, or if the system is finite, we can resum
the expansion into a finite number of terms.

For a test case, we consider the Anderson impurity
model (AIM) on a ring[10], which has recently been

extensively studied using density matrix renormaliza-
tion group (DMRG)[28]. The AIM consists of a non-
interacting bandwidth of W , a hybridization V , and an
impurity interaction U . The interacting projectors can
be chosen as local to the impurity, and the exponential
can be rewritten as a sum of Hubbard operators within
the impurity as

P̂τ = exp(µτ
∑
σ

n̂σ + uτ n̂↑n̂↓) =
∑

Γ

Pτ,ΓX̂Γ, (7)

where X̂Γ = |Γ〉〈Γ| is a Hubbard operator and Pτ,0 =
1, Pτ,σ = exp(µτ ), and Pτ,2 = exp(2µτ + uτ ); and the
subscripts 0, σ, 2 correspond to empty, singly occupied,
and double occupied local states, respectively. For this
interacting projector, Eq. 5 will have a finite number of
terms and thus can be evaluated exactly.

The computational cost of evaluating the total energy
for a given SPD in the AIM is dictated by two factors.
The first cost is associated with constructing the non-
interacting ITGF for the entire system, which scales at
worst as N 2L3. Second, there is the cost of evaluating
the total energy using the integer time Wick’s theorem,
which scales exponentially with the number of integer
time steps N [10]. For the particular cases of N ≤ 4 and
L ≈ 1000, the computational cost is always dominated
by L via the first factor, and therefore in this scenario
a single evaluation of VDAT has a relatively minimal
computational cost.

Having all the machinery necessary to evaluate the to-
tal energy under the SPD, we can then minimize over the
variational parameters in order to determine the ground
state of the Hamiltonian. Given the specific parameter-
ization of the SPD we have chosen (see reference [10],
Section VII B 1), there will be d(N − 1)/2e interacting
variational parameters, while there will be 3b(N − 1)/2c
non-interacting variational parameters. Therefore, the
total number of iterations for minimizing the energy un-
der the SPD will be a constant that is independent of L,
and VDAT for 1 < N ≤ 4 should have a similar scaling
to N = 1 (i.e. Hartree-Fock).

We now evaluate the ground state energy E(U, V ) and
the local impurity spin correlation[29] 〈Ŝzf Ŝzf 〉 = 1

4 〈(n̂f↑−
n̂f↓)

2〉 (see Figure 1, panel a), where the latter probes the
double occupancy and density on the impurity site, and
compare to numerically exact DMRG calculations[28].
For N = 2, which recovers the Gutzwiller wave function,
the result is only a rough approximation to the DMRG
results. Alternatively, N = 3 only shows very small de-
viations from the DMRG results, and N = 4 further
diminishes the differences. Clearly, the SPD converges
extremely rapidly with respect to N . What is especially
remarkable is that N = 4 has a computational scaling
similar to Hartree-Fock, yet has a precision approaching
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Figure 1. A comparison of VDAT (N = 2, 3, 4) and pub-
lished DMRG results[28] for the Anderson impurity model on
a ring with V/W = 0.1. (Panel a) A plot of energy difference
−∆E = E(U, 0)−E(U, V ) (right axis) and 〈Ŝzf Ŝzf 〉 (left axis)
vs. U/W , with L = 1397 unless otherwise noted. (Panel b)
The unscreened spin S(r) vs. the distance from the impurity
site with L = 797.

DMRG. We can also compute the unscreened spin[28, 30]

S (R) = 〈Ŝzf (Ŝzf + Ŝz0,c +

R∑
r=1

(Ŝzr,c + ŜzL−r,c))〉, (8)

which is a far more challenging observable given that it
involves a long range correlation between the impurity
and the bath (see Figure 1, panel b). Once again, N =
2 has reasonable but relatively inaccurate results, while
N = 3, 4 are much more accurate.

The preceding approach of using the integer time
Wick’s theorem to sum all diagrams would be intractable
for a general interacting system. This motivates us to
push forward our discrete action theory, and generalize
the traditional tools of many-body physics. Consider the
interacting ITGF under an SPD defined as

[g]kτ,k′τ ′ = 〈Tâ†k (τ) âk′ (τ ′)〉%̂, (9)

where τ = 1, . . . ,N and k = 1, . . . , L and Ô(τ) is an
operator in the integer time Heisenberg representation
defined as

Ô(τ) = Ûτ ÔÛ
−1
τ , Ûτ = P̂1 . . . P̂τ . (10)

Furthermore, when constructing interaction energies and
computing the gradient of the total energy with respect
to the variational parameters, we will need general in-
teger time correlation functions 〈TÔ1(τ1)...ÔM (τM )〉%̂;
which can be rewritten in the integer time Schrodinger
representation as

〈TÂÔ1,S(τ1)...ÔM,S(τM )〉1̂
〈TÂ〉1̂

, where Â = Â0P̂ , (11)

Â0 = exp
( N∑
τ=1

γτ · n̂S(τ)
)
, P̂ =

N∏
τ=1

P̂τ,S(τ), (12)

and ÔS(τ) is an operator in the integer time Schrodinger
representation where ÔS(τ) = Ô after applying the time
ordering operator. We refer to Â as the discrete action,
given that it encodes all possible integer time correlations
under the SPD. Moreover, we can generalize the form
of Â such that it can describe integer time correlations
beyond the SPD, and an important generalization allows
for an Â0 which has off-diagonal integer time components
as

Â0 = exp(
∑
kτk′τ ′

[v]kτ,k′τ ′ â†k,S(τ)âk′,S(τ ′)), (13)

where v is a general matrix of dimension LN × LN [10].
We refer to this more general form as a canonical discrete
action (CDA), which will be critical to exactly evaluating
the SPD in d =∞.

It is useful to define the discrete generating function,
which encodes all information of the discrete action into
a scalar function

Z(g0) ≡ 〈Â〉1̂/〈Â0〉1̂. (14)

For example, using the discrete generating function and
the Lie group properties of the non-interacting many-
body density matrix[10], we can derive the discrete Dyson
equation

(g−1 − 1) = (g−1
0 − 1) exp(−Σ)T , (15)

where the integer time self-energy Σ and exponential in-
teger time self-energy S are obtained from the generating
function as

exp (Σ)
T

= S−1 = 1 +
1

Z1− ∂Z
∂gT

0
g0

∂Z

∂gT0
. (16)

This discrete Dyson equation plays a central role in our
formalism, much like the traditional Dyson equation. In
the limit of large N , the discrete Dyson equation reverts
to the usual Dyson equation assuming that the SPD is
chosen as the Trotter-Suzuki decomposition[10]. While
we have illustrated the single particle ITGF above, any
n-particle integer time correlation function can be deter-
mined from the generating function[10].
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Figure 2. Results for the d = ∞ Hubbard model on the
Bethe lattice. (Panel a) The double occupancy vs. U/t for
various densities using VDAT(N = 3) (lines) and DMFT
(points); and selected N = 2 results (dashed lines). (In-
set) Lower densities are evaluated. (Panel b) Quasiparticle
weight vs U/t at n = 1 for VDAT(N = 2, 3, 4) and DMFT.
(Panel c) The difference in the double occupancy between
VDAT(N = 2, 3, 4) and DMFT vs. U/t for n = 1. (Panel d)
The density distribution vs. energy at n = 1 for various U/t
using VDAT(N = 2, 3, 4) and DMFT; the N = 2 results are
illustrated with a single green point and label for brevity.

We now have the proper tools to study the single-band
Hubbard model, and we use an SPD with an interact-
ing projector P̂τ = exp(µτ

∑
iσ n̂iσ +

∑
i uτ n̂i↑n̂i↓), while

the non-interacting projector uses a diagonal γτ in the
basis that diagonalizes the non-interacting Hamiltonian.
In order to evaluate the discrete generating function, we

introduce the self-consistent canonical discrete action ap-
proximation (SCDA), which is the integer time analogue
of DMFT[9]. The SCDA maps the SPD to a collection
of CDA’s, with one CDA corresponding to each site in
the lattice, and the non-interacting part of the CDA is
determined self-consistently while the interacting part is
taken from the SPD. The essence of the SCDA is the
assumption that the integer time self-energy is local

Σij (g) = δijΣloc (gloc) . (17)

Analogous to DMFT, which assumes a local self-energy
and becomes exact in d = ∞, the SCDA exactly eval-
uates the SPD in d = ∞. For example, the SCDA for
N = 2 recovers the result that the Gutzwiller approxi-
mation exactly evaluates the Gutzwiller wave function in
d = ∞[31]. Additionally, the SCDA for N = 3 exactly
evaluates generalizations of the Gutzwiller-Baeriswyl and
Baeriswyl-Gutzwiller wave functions in d = ∞, which
had not yet been achieved. For N > 3, the SCDA exactly
evaluates an infinite number of variational wave functions
in d =∞ that have not yet been considered.

The SCDA algorithm exactly parallels the DMFT algo-
rithm. We can begin with a guess for the non-interacting
ITGF G =

∫
dεD (ε) g0 (ε) for the CDA, where D(ε) is

the density-of-states. We can then compute the generat-
ing function of the CDA, which yields Sloc. We then use
this exponential integer time self-energy to update the
interacting ITGF for each energy orbital as

g (ε) =
1

g0 (ε) + (1− g0 (ε))Sloc
g0 (ε) . (18)

Then we obtain the new interacting local ITGF as gloc =∫
dεD (ε) g (ε). Finally, the new non-interacting ITGF of

the CDA is

G = Sloc
1

1 + gloc (Sloc − 1)
gloc. (19)

This procedure must be iterated until self-consistency is
achieved, which yields a single evaluation of the SPD for
a given set of variational parameters. The above pro-
cedure is applicable to any Hubbard-like model, but it
will yield an exact evaluation of the SPD for infinite
dimensions[10].

The number of variational parameters for the inter-
acting projector will be the same as the AIM, while for
the non-interacting projector we restrict to at most four
variational parameters for each integer time[10]. The
main computational complexity of solving the Hubbard
model as compared to the AIM is that we must perform
a self-consistency condition, though this can normally be
achieved in small number of iterations. We now address
the d = ∞ Hubbard model on the Bethe lattice. It
should be emphasized that the computed ground state
energy within VDAT is a rigorous upper bound for the



5

exact ground state energy, and we can compare to the nu-
merically exact dynamical mean-field theory results ob-
tained using the numerical renormalization group (NRG)
method as the impurity solver[32].

We begin by examining the double occupancy, which
is the derivative of the ground state energy with respect
to U and hence a sensitive probe of the total ground
state energy (see Figure 2, panel a; also see Supplemen-
tary Material[33] for plots of ground state energy). First
we present VDAT results for N = 3 and selected re-
sults for N = 2, where the latter is the well known
Gutzwiller approximation. For half-filling, shown in red,
we see that VDAT N = 3 is very close to the DMFT
solutions (points), reliably capturing the Mott metal-
insulator transition, and illustrating drastic improvement
beyond N = 2. Furthermore, we can see that VDAT
N = 3 clearly captures the sensitive changes with small
doping, illustrated for the densities of 1, 0.99, 0.98, 0.95,
and 0.9. We can also proceed to much larger dopings
(see inset), where VDAT N = 3 once again reliably de-
scribes the DMFT solution. All VDAT results discussed
thus far have been for N ≤ 3, and it is interesting to
consider N = 4 to better understand the convergence
of the VDAT. Therefore, we examine the error in the
double occupancy at half filling for N = 2 − 4 (see Fig-
ure 2, panel c). We see that N = 4 has a smaller error
for all values of U/t, as it must, and the error for large
U/t is nearly zero. Another interesting quantity is the
density distribution n(ε) = 〈â†εσâεσ〉 (see Figure 2, panel
d), given that the kinetic energy is 2

∫∞
−∞ dεD(ε)n(ε)ε.

It is well known that N = 2 (i.e. Gutzwiller) produces
a constant density distribution below the Fermi energy
(the horizontal line is denoted with a single green point
in panel d), and we show that N > 2 produces a non-
trivial energy dependence. Another key aspect of n(ε)
is the discontinuity at the Fermi energy, which dictates
the quasiparticle weight Z = n(0−) − n(0+) (see Figure
2, panel b). While N = 2 recovers the usual Gutzwiller
result, N > 2 precisely captures the Mott transition and
yields reasonable agreement for N = 4. Furthermore,
one can approximately extract the real frequency spec-
trum from the extended density distribution[33].

In conclusion, we have proven that VDAT with N = 3
already yields efficient and precise results for the Ander-
son Impurity model and for the d = ∞ Hubbard model.
Furthermore, it is straightforward to address the multi-
orbital Hubbard model[10], which is under way. Given
that VDAT recovers the Hartree-Fock and Gutzwiller
wave functions, it is clear that VDAT can be com-
bined with DFT in the same spirit as DFT+U[34] and
DFT+Gutzwiller[35]; and therefore DFT+VDAT would
be a prime candidate as an efficient first-principles ap-
proach to strongly correlated materials, which should ri-
val DFT+DMFT[36]. There are many possible directions
for future development. Both diagrammatic and auxil-
iary field quantum Monte-Carlo could be generalized to

our formalism. While our present work on the SPD has
used real variational parameters, we can apply VDAT
using an SPD with unitary projectors[10], which could
have utility in quantum computing[17–19] and unitary
coupled cluster theory[24–26]. VDAT will be a key tool
for parameterizing energy functionals in the context of
the off-shell effective energy theory[37].
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