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Fast scramblers are dynamical quantum systems that produce many-body entanglement on a
timescale that grows logarithmically with the system size N . We propose and investigate a family
of deterministic, fast scrambling quantum circuits realizable in near-term experiments with arrays
of neutral atoms. We show that three experimental tools – nearest-neighbor Rydberg interactions,
global single-qubit rotations, and shuffling operations facilitated by an auxiliary tweezer array – are
sufficient to generate nonlocal interaction graphs capable of scrambling quantum information using
only O(logN) parallel applications of nearest-neighbor gates. These tools enable direct experimen-
tal access to fast scrambling dynamics in a highly controlled and programmable way, and can be
harnessed to produce highly entangled states with varied applications.

Quantum information scrambling describes a process
in which initially localized quantum information is de-
localized by the dynamics of a many-body system and
encoded into a many-body entangled state [1–4], thereby
effectively hiding the information from local observers.
This process cannot occur instantaneously: the fast
scrambling conjecture states that scrambling can develop
on timescales no shorter than t∗ >∼ logN which scale log-
arithmically with the system size N . Systems that sat-
urate this conjectured bound on the scrambling time t∗
are known as fast scramblers [2]. Fast scrambling dy-
namics can rapidly generate Page-scrambled states, pure
quantum states of a many-body system whose reduced
density matrix ρA is maximally mixed for almost all sub-
systems A of size |A| < N/2 [1–3]. Prototypical mod-
els for fast scrambling [3, 5–9], inspired by the study of
quantum information in black holes [1, 2, 10], often fea-
ture randomness and long-range couplings as key ingre-
dients, although some recent deterministic models have
been proposed with sparse or all-to-all coupling graphs
with varying weights [11–13].

In this work, we propose experimental tools for achiev-
ing fast scrambling in near-term experiments with one-
dimensional (1D) arrays of optically-trapped neutral
atoms [14–25]. By rapidly shuffling atoms using opti-
cal tweezers it is possible to implement a broad family
of nonlocal, sparsely-coupled quantum circuits that real-
ize fast scrambling quantum channels [2–4]. Using such
shuffling techniques for long-lived ground-state atomic
qubits allows for the generation of highly non-local in-
teraction graphs with only global rotations and nearest-
neighbor Rydberg interactions. Though shuffling op-
erations will generally be slower than Rydberg gates,
limiting the number of gates to O[log(N)] minimises
the primary sources of noise and decoherence, which
arise from laser excitations to Rydberg levels [21, 26–30].
The simplest versions of these circuits efficiently produce
many-body-entangled graph states [31], known computa-

FIG. 1. Fast scrambling via quasi-1D shuffling. (a)
Neutral atoms (red dots, blue circles) trapped in a static 1D
optical lattice (gray boxes) can be rapidly rearranged via a
two-step shuffling operation R (i-iii) facilitated by an auxil-
iary 1D tweezer array (bottom-left). Iterated shuffling and
nearest-neighbor Rydberg interactions yield effective interac-
tions on highly nonlocal coupling graphs such as them-regular
hypercube graph Qm (b). More generally, circuits (c) com-
posed of shuffles (blue), nearest-neighbor controlled-Z opera-
tions (red), and global rotations (purple) can be harnessed to
generate Page-scrambled quantum states in m iterations, or
strongly-scrambling quantum channels in 2m iterations.

tional resources for measurement-based quantum compu-
tation [32, 33], quantum metrology [34], quantum error-
correction [35], and quantum cryptography [36]. More
sophisticated circuits built with the same experimental
tools yield strongly scrambling quantum channels capa-
ble of robustly protecting quantum information against
multi-qubit erasure [10, 37–39].

Below we analyze iterated (Floquet) circuits built with
these tools both for the idealised unitary case and the dis-
sipative case expected in realistic implementations. We
demonstrate that initially-separable states can be Page-
scrambled using only m ≡ dlog2Ne nearest-neighbor in-
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teraction layers and construct deterministic circuits with
only 2m interaction layers that strongly scramble quan-
tum information regardless of the input state.

The basis for our protocol is the possibility to realize a
family of sparse nonlocal coupling graphs via a quasi-1D
shuffling procedure (Fig. 1a) on atoms in optical lattices
facilitated by an auxiliary programmable 1D tweezer ar-
ray. Straightforward stretching and interleaving tweezer
operations [40–43] (Fig. 1a(i-iii)) can be used to rapidly
shuffle the atomic positions. For N = 8 these motions
execute the permutation

R =

(
0 1 2 3 4 5 6 7
0 4 1 5 2 6 3 7

)
(1)

with atoms labelled by i = 0, 1, . . . , N − 1. More gen-
erally, for system sizes N = 2m with m an integer, a
perfect shuffle or Faro shuffle operation [44, 45] executes
the nonlocal mapping

i′ = R(i = bm . . . b2b1) = b1bm . . . b2, (2)

which cyclically permutes the bit order of the atomic
index i = bm . . . b2b1 written in binary such that the
least significant bit b1 of i becomes the most signif-
icant bit of R(i). The shuffling operation R, along
with its inverse R−1 and generalizations thereof [46],
are built on established tweezer-assisted techniques for
defect-removal in atom arrays [41–43], and can be imple-
mented rapidly using a pair of Acousto-Optic Deflectors
(AOD) in crossed configuration and driven by indepen-
dent RF signals fx, fz (Fig. 1a, bottom-left).

Repeated shuffling operations R dramatically rear-
range the atomic positions. As a result, the propagation
of quantum information is no longer constrained by the
underlying 1D geometry of the fixed optical lattice. The
simplest iterated circuit EQm

≡ [R · CZ(even)]
m gener-

ates effective controlled-Z interactions on the m-regular
hypercube graph Qm [47, 48], a highly nonlocal, sparsely-
connected coupling graph shown in Fig. 1b. These nonlo-
cal couplings allow many-body entanglement to be built
up rapidly and efficiently using far fewer Rydberg inter-
action layers than would be needed in strictly 1D systems
without shuffling. For example, given N = 2m qubits ini-
tialized in the product state

∏
i |+〉i =

∏
i(|0〉+ |1〉)i/

√
2

the circuit EQm
produces the Page-scrambled graph state

|Qm〉 after only m interaction layers CZ(even) [34, 46].
More sophisticated circuits built using the same exper-

imental tools (Fig. 1c) can robustly scramble quantum
information irrespective of the input state. By includ-
ing global Hadamard H and Phase P rotations, one can
implement a strongly-scrambling circuit

Es ≡ [R−1 ·CZ(odd) ·H ·P ]m[R−1 ·CZ(even) ·H ·P ]m (3)

that yields widespread many-body entanglement after
only 2m interaction layers CZ(even),CZ(odd) for arbitrary

FIG. 2. Page scrambling in 2m = 2 log2N steps. (a) The

mean deficit 〈∆S(2)
A 〉 from volume-law entanglement entropy,

sampled over 2× 104 random bipartitions A ∪A of fixed size
|A|, decreases in the circuit Es onN = 128 qubits (solid red) at
a rate comparable to a random all-to-all circuit (dashed blue)
and much faster than a comparable nearest-neighbor circuit
(dotted green). (b) After 2m circuit layers the mean Renyi en-

tropy 〈S(2)
A 〉 (red diamonds), nearly saturates the Page curve

(red), compared to a nearest-neighbor circuit of the same

depth (b, inset). (c) The mean entropy deficit 〈∆S(2)
A 〉 agrees

with random matrix theory (dotted black) to within sampling
fluctuations for N = 16, 32, 64, 128, 256 (light to dark). (d)
The fraction fε,|A| of subsystems A having less than maximal
entanglement entropy (white dots) vanishes exponentially as

a function of ∆S
(2)
A / ln 2 = ε = 0, 1, 2, 3, in agreement with

random matrix theory (vertical bars, light to dark). Error
bars shown or smaller than markers; lines are guides to the
eye; gray windows show statistical noise floor.

input states, as demonstrated by numerical studies of
Clifford circuits (Fig. 2)[46, 49, 50]. For N = 128 ini-
tially z-polarized qubits, randomly-chosen subsystems A
consisting of an extensive number |A| = N/2− 1 of out-
put qubits exhibit nearly maximal entanglement entropy
after only t∗ = 2m = 14 interaction layers, as measured

by the Renyi entropy S
(2)
A ≡ − ln Tr

[
ρ2A
]

of the reduced
density matrix ρA ≡ TrA [ρ] (Fig. 2a). The average

deficit 〈∆S(2)
A 〉 ≡ |A| ln 2 − 〈S(2)

A 〉 from perfect volume-
law entanglement, sampled over 2×104 randomly-chosen
bipartitions A ∪ A (solid red), rapidly decreases as a
function of interaction layer t, saturating the Page limit

∆S
(2)
A = 22|A|−N−1 (horizontal red) [1, 51] prior to layer

t∗ = 2m. The timescale t∗ ∼ logN required for complete
scrambling is comparable to that of a random all-to-all
circuit (dashed blue) – generally regarded as a prototyp-
ical fast scrambler [2, 3, 8, 12, 52] – and much shorter
than for a nearest-neighbor circuit constructed without
shuffling operations (dotted green).

In fact the 2m interaction layers of the circuit Es suf-
fice to generate volume-law mean entanglement entropy
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〈S(2)
A 〉 ≈ |A| ln 2 at all length scales |A| < N/2 of the

output state ρ = Es[ρ0]. Randomly-chosen bipartitions
A ∪ A, when organized by subsystem size |A|, reveal a
nearly ideal Page curve [1, 51] (Fig. 2b, red). The mean

entanglement deficit 〈∆S(2)
A 〉 is extremely small for al-

most all subsystem sizes and becomes substantial only
for very large |A| ∼ N/2. Moreover, it is in excellent
agreement with the predictions of random matrix theory
(RMT) for binary matrices representing random stabi-
lizer states over a range of system sizes (Fig. 2c) [46].

The widespread delocalization of information gener-
ated by the scrambling circuit Es is especially apparent
when one considers how unlikely it is to find a subsystem
A of the output state ρ with anything less than maxi-
mal entanglement (Fig. 2d). Because the scrambling cir-
cuit Es consists entirely of gates chosen from the Clifford
group, the Renyi entropy differs from its maximum value

only by discrete bits ∆S
(2)
A / ln 2 = ε = 0, 1, 2, . . . [49, 50].

We therefore count the fraction fε,|A| of the sampled bi-
partitions whose Renyi entropies differ from maximal by
an amount ε (Fig. 2d). We find that exponentially-many
subsystems A have maximal entanglement entropy ε = 0
(for |A| < N/2), whereas it is exponentially rare to find
a subsystem A with entropy deficit ε > 0.

FIG. 3. Deterministic scrambling in the Hayden-
Preskill thought experiment. (a) Scrambling in the
circuit Es can be characterized by the mutual information

I
(2)
2 (A : RB) between Alice’s register A (red) and Bob’s reg-

isters R,B (blue). (b) For N = 128 qubits, the mutual infor-
mation grows rapidly as a function of Bob’s output register R
over a range of message sizes |A| = 1, 3, 5, 7, 9 (light to dark),
saturating to within 5% of its maximum value (dotted black)
after Bob has collected only a handful |R|min ≥ |A| + k of
output qubits with k ≤ 2 (c, dotted black). Nearest-neighbor
circuits of the same depth (crosses, dashed lines) show rel-
atively low mutual information by comparison. (d) At fixed

|A| = 5, I
(2)
2 (A : RB) shows strong data collapse as a function

of system size N = 16, 32, 64, 128, 256 (light to dark). Error
bars smaller than markers; lines are guides to the eye.

Due to its ability to rapidly delocalize – and thereby
conceal – quantum information, the scrambling circuit
Es naturally serves a practical function in the context of
quantum error correction and quantum communication.
In particular, strongly-scrambling quantum channels are
known to be excellent encoders that optimally protect
quantum information against the effects of single-qubit
erasure and other forms of local dissipation [10, 37, 52].
While prototypical examples of such encoding circuits
are usually random, we demonstrate here that our de-
terministic circuit Es can be leveraged for precisely the
same task, as illustrated by the thought experiment of
Hayden and Preskill [10, 37–39] (Fig. 3). Here, quantum
information held by a local observer Alice A is dumped
into the strongly scrambling quantum channel Es and is
subsequently recovered with high fidelity by a maximally-
entangled observer Bob after measuring only a small sub-
setR of the output qubits and neglecting the restR. High
fidelity teleportation of Alice’s quantum information to
Bob’s register B occurs if and only if the unitary channel
is strongly scrambling [10, 38] and therefore presents a
sharp criterion for diagnosing the presence of scrambling
dynamics in our circuit Es.

From the perspective of quantum error correction, we
view the scrambling circuit Es as an encoding circuit that
optimally protects Alice’s information against erasure, al-
lowing Bob to successfully reconstruct Alice’s state even
after discarding the large majority of output qubits R.
This is guaranteed in principle by large bipartite mutual
information

I
(2)
2 (A : RB) = S

(2)
A + S

(2)
RB − S

(2)
ARB (4)

between the qubits A in Alice’s control and those R,B in
Bob’s control (Fig. 3a). Numerical calculations with Clif-
ford circuits demonstrate that the circuit Es on N = 128
qubits performs quite well as an encoding channel: the
mutual information increases linearly with the number
of output qubits |R| collected by Bob (Fig. 3b) and
rapidly saturates to within 5% of its maximum value

I
(2)
2 (A : RB) = 2 |A| ln 2 after he has collected a few more

than |A| qubits. Physically, this implies that Bob need
only gather a few |R|min ≥ |A| + k of the output qubits
in order to successfully decode Alice’s message (Fig. 3c),
with k ≤ 2 for largeN . By contrast, nearest-neighbor cir-
cuits of the same depth (Fig. 3b, dashed lines) show low
mutual information over a large range of output qubits
|R|. For fixed message size |A| = 5, the mutual informa-
tion shows strong data collapse as a function of system
size N (Fig. 3d), indicating robustness to finite-size ef-
fects.

The numerical evidence presented in Figs. 2, 3 demon-
strates that Es is a fast scrambler in the ideal unitary case.
Any realistic implementation of this scrambling circuit,
however, must contend with the effects of noise and dis-
sipation that will inevitably degrade its performance. In
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the following, we analyze a possible experimental realiza-
tion of Es in detail including the effects of decoherence to
characterize its scrambling properties in a realistic setup.

We propose to use long-lived ground states |0〉 , |1〉 of
neutral atoms as qubit states [30, 53, 54]. Single-qubit ro-
tations allow for implementation of Hadamard and Phase
gates. By exciting |1〉 to a Rydberg state, controlled-
Z gates between neighboring atoms can be realized us-
ing strong van der Waals interactions [21, 26–29, 55–57].
Current experiments already achieve Rydberg gate fideli-
ties > 0.99 [21, 57]. A primary advantage of these op-
erations is that they may be applied in parallel, using
global optical or RF pulses. For our simulations, we take
into account crosstalk between atoms separated by the
distance r, resulting from the 1/r6-decay of the van der
Waals interaction. We model decoherence as dephasing
noise with error rate p per atom after each interaction
layer [46].

To distinguish between scrambling and decoherence,
we attempt to recover Alice’s information using a prob-
abilistic decoding circuit (Fig. 4a, dotted purple), fol-
lowing the scheme of Yoshida, Kitaev, and Yao [37–39].
This decoder consists of a complex-conjugated copy of
the scrambling circuit and the ability to measure EPR
pairs; decoding protocols of this type have been realized
in pioneering experiments with trapped ions [58]. In the
unitary case p = 0, the circuit decodes Alice’s quantum

information with a fidelity FEPR = 2I
(2)
2 (A:RB)−2|A|, con-

ditioned on successful detection of |R| EPR pairs by Bob

with probability PEPR = 2−I
(2)
2 (A:RB) (Fig. 4b). Bob’s

ability to recover Alice’s information is degraded by deco-
herence p > 0, where the product δ ≡ PEPRFEPR22|A| ≤
1 gives a natural metric for the strength of decoherence
[38, 39].

We compare the scrambling circuit to an analogous cir-
cuit without shuffling and thus with controlled-Z gates
between nearest neighbors only. Notably, the nearest-
neighbor circuit requires a longer time, measured in the
number of interaction layers, to accomplish scrambling.
While the decoherence metric δ behaves the same for
the nearest neighbor circuit and the scrambling circuit Es
(Fig. 4d), for p > 0, the reachable teleportation fidelity
FEPR is significantly smaller for the slow scrambling near-
est neighbor circuit (Fig. 4c). This demonstrates that
fast scrambling is crucial in non-error-corrected systems,
precisely because fewer gates provide fewer opportunities
for dissipation. Our scrambling circuit Es is optimal in
this regard as it generates strong scrambling using the
minimal number of interaction layers 2m ∼ O(logN) al-
lowed by the fast scrambling conjecture [2, 3, 8].

We have shown how deterministic, highly-nonlocal it-
erated (Floquet) circuits can generate fast scrambling
dynamics in a way that is amenable to direct experi-
mental realization using fast shuffle operations on neutral
atom qubits. This technique allows for rapid long-range

FIG. 4. Information scrambling in the presence of dis-
sipation. (a) Scrambling in the circuit Es is diagnosed by
the fidelity FEPR of recovering Alice’s quantum information
A on Bob’s register C using a probabilistic decoding circuit
(dotted purple). (b) For N = 8 at fixed circuit depth t = 6
the fidelity grows with the number of qubits |R| used in the
decoder, indicating successful teleportation of Alice’s infor-
mation with fidelity > 50% even in the presence of single-
qubit errors at rates p = 0.00, 0.01, . . . , 0.04 per two-qubit
gate (light to dark). For p = 0 the fidelity is nearly identi-
cal to that of a Haar-random circuit (dotted black). (c) The
fidelity (dots, solid lines) grows with circuit depth t, and sub-
stantially outperforms nearest-neighbor circuits of the same
depth (crosses, dotted lines) in the presence of dissipation.
(d) The dissipation parameter δ falls as a function of circuit
depth in both the scrambling circuit and nearest-neighbor cir-
cuit. Each datapoint averaged over 6 × 104 quantum trajec-
tories, with error bars smaller than markers; lines are guides
to the eye.

spreading of entanglement while minimising errors from
excitation of atoms to Rydberg states, and uses only shuf-
fling operations, global single-qubit rotations and parallel
nearest-neighbor interactions. Building fast scrambling
circuits in the laboratory opens connections to a wide
range of ongoing areas, including fundamental limits on
the spreading of quantum information [2, 3, 8, 59], ex-
perimental studies of toy models of black holes [11, 60–
63], efficient encoders for quantum error-correcting codes
[10], and highly-entangled resources for quantum com-
putation [32, 33]. While we simulate example cases with
stabilizer states [49, 50, 64] for large system sizes, anal-
ogous circuits built in the laboratory may employ arbi-
trary quantum rotations, exploring the complete many-
body Hilbert space. We note that these graphs might also
be constructed by other means, including collisional gate
implementations for neutral atoms, or via direct wiring
of hypercubic coupling graphs in superconducting qubit
systems.

In the final stages of this work, we became aware of
a proposal [63] for further explorations of many-body
quantum teleportation, based around nearest-neighbor
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Rydberg models with scrambling times t∗ ∝ N . The
protocols we describe here for fast scrambling could be
immediately combined with these interesting proposals
to extend the example from Fig. 4 discussed here.
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