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Spontaneous decay of a single photon is a notoriously inefficient process in nature irrespective of
the frequency range. We report that a quantum phase-slip fluctuation in high-impedance supercon-
ducting waveguides can split a single incident microwave photon into a large number of lower-energy
photons with a near unit probability. The underlying inelastic photon-photon interaction has no
analogs in non-linear optics. Instead, the measured decay rates are explained without adjustable
parameters in the framework of a new model of a quantum impurity in a Luttinger liquid. Our re-
sult connects circuit quantum electrodynamics to critical phenomena in two-dimensional boundary
quantum field theories, important in the physics of strongly-correlated systems. The photon lifetime
data represents a rare example of verified and useful quantum many-body simulation.

Although photons have zero mass, fundamental laws
do not prevent their splitting into more photons as soon
as some form of non-linearity is present. Thus, indi-
vidual 100 MeV-photons split in the Coulomb field of
heavy nuclei because of vacuum polarization [1] and so
do optical photons in non-linear crystals via the pro-
cess of spontaneous parametric down-conversion [2, 3].
However, the splitting probability is extremely low, e.g.
it does not exceed 107% per cm of optical crystal, the
origin of which can be traced down to the small value
of the fine-structure constant. Interactions at the sin-
gle photon level are known to be dramatically enhanced
in circuit quantum electrodynamics (cQED), owing to
both the reduced mode volume of microwave transmis-
sion lines and the non-linearity of Josephson junctions [4].
Notable achievements include observations of vacuum
Rabi [5] and photon number [6] splittings, resonance
fluorescence [7], as well as implementations of multi-
mode [8] and ultrastrong coupling regimes [9, 10]. Yet,
spontaneous down-conversion remains improbable even in
c¢QED. The splitting of photons into two [11] or three [12]
ones was observed only under a strong stimulation of non-
linear circuits by a classical field, a process that can be
well understood using semi-classical wave mixing equa-
tions [13]. In stark contrast, we encountered an effi-
cient quantum mechanism of photon-photon interaction
in high-impedance superconducting waveguides. With-
out any external stimulus, it boosts the photon splitting
probability by many orders of magnitude to a value ap-
proaching unity.

The central part of our setup is a long on-chip “tele-
graph” transmission line terminated by a weak Josephson
junction (Fig. la, upper panel). Itself made of a chain
of 20,000 stronger junctions, the line implements a one-

dimensional vacuum with its wave impedance Z com-
parable to resistance quantum for Cooper pairs Rg =
h/(2e)? ~ 6.5 kQ, which translates into an effective fine
structure constant a = Z/Rg of order unity [14, 15]. In
such a vacuum, microwave photons propagate as sound-
like transverse electro-magnetic excitations of the super-
conducting phase field ¢(z,t), described by a quadratic
Luttinger liquid-like Lagrangian
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where v is the speed of light in the low-frequency limit
and the photon dispersion w(k) = vk/\/1 + (vk/w,)? has
a natural ultra-violet cutoff at w,, /27 ~ 20 GHz, given by
the plasma resonance of the chain junctions. The weak
“impurity” junction presents a non-linear boundary at
x = 0 to the otherwise free field p(z > 0,1), which results
in the following total system Lagrangian:

h2p(z = 0,1)2

L=Lo+ E;(®)cosp(z=0,t) + 16Ec

(2)
The Josephson energy E; of the impurity junction is
tuned by an external flux ® using superconducting quan-
tum interference device (SQUID) configuration, and the
charging energy Ec = €2/2C is due to the oxide capac-
itance C. We focus on devices with Ec < FEj, such
that the junction mimics a transmon qubit [16] with the
resonance at wy ~ (<8EJEC)1/2 — EC) /h and classical
damping rate I' = 4E¢ /hra [17].

In a harmonic approximation, an incident photon at a
frequency w would merely scatter off the junction elas-
tically with a phase shift §(w) = arctan((w — wo)/#T).
Inelastic scattering probability due to the conventional
self-Kerr non-linearity oc ¢(z = 0)* falls into the range
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FIG. 1. (a) Schematic of a telegraph transmission line terminated by a Josephson junction at the right end and weakly coupled
to a measurement port at the left end. Device photographs and microwave setup are shown in Ref. [14, 17]. The quantum field
o(w,t) represents the superconducting phase-difference between the two wires of the line. Lower panel illustrates an inelastic
scattering process that splits an incident single photon at £ = 0 in one resonant photon and even number of low-frequency
photons. (b) Quantum tunneling of the boundary variable p(z = 0) in the periodic Josephson potential renders the energy of
the first excited level sensitive to quantum fluctuations of the dynamical charge g at the x = 0 end of the line. The sensitivity
of the ground state can be neglected. (c¢) The measured positions of standing wave resonances as a function of flux through
the split-junction loop in device 3a [18]. The color shows probability to lose a single photon in one round-trip time.

10=% — 107% [17, 18] and is hardly measurable. How-
ever, a much more efficient non-linearity emerges for
a 2 1 from the quantum phase-slip fluctuations across
the junction [19, 20]. Namely, tunneling of the phase
p(x = 0) between the equivalent minima of the Joseph-
son energy renders the energy levels sensitive to the dy-
namical charge ¢ [21-23] displaced at the junction end
of the transmission line (Fig. 1b). The quantum fluctu-
ations of ¢, unlike those of the boundary phase p(z = 0)
around a single minimum, are not suppressed at any,
even low, frequency. That leads to a profound differ-
ence between the conversion processes induced by the
self-Kerr versus the phase-slips non-linearity. The latter
opens an infinite number of inelastic scattering channels
in the limit of the transmission line’s length [ — oco: a sin-
gle incoming photon produces one outgoing photon of a
comparable frequency, accompanied by any even number
of low-frequency photons. Provided that the phase-slip
amplitude is reasonably large, a single incident photon
can split with a probability near unity [18].

The production of low-frequency photons in large
quantities has a deep connection to quantum impurity
physics [24]. In fact, for Ec,w, — oo, Egs. (1),(2) de-
fine the boundary sine-Gordon (BSG) quantum impurity
model with a critical point at & = 1 [25]. The BSG model
is important for its integrability property and for describ-
ing diverse condensed matter phenomena, from dissipa-
tive localization in a periodic potential [26, 27] to electron
tunneling in Luttinger liquids [28]. The critical dynamics
of the field ¢ manifest precisely by inelastic scattering of

its bulk excitations — photons in our case — off the non-
linear boundary [29]. If the scattering was limited to a
mere phase-shift, the boundary could be replaced by a
linear one, which would have eliminated interaction ef-
fects. Notably, calculating the reflection amplitude r(w)
as a function of frequency w is a difficult task, and it
becomes even more so in the presence of the Fo-term,
which prevents using the exact BSG results. Therefore,
measuring r(w) would accomplish a useful quantum sim-
ulation, which further motivates our experiment.

To measure r(w) at © = 0 we introduce a second reflec-
tive boundary at = ! = 6 mm in the form of a weakly
coupled input/output port. A single photon impinging
at the impurity boundary can either scatter elastically
with a phase-shift §(w) or it can split into several left-
moving photons (Fig. la, lower panel). In both cases,
the left-moving photons bounce back at x = [ and the
process repeats. If the elastic scattering dominates, the
two boundaries define a Fabry-Pérot resonator with a free
spectral range A = v/(2l) ~ 150 MHz, and the positions
of standing-wave mode resonances are linked to §(w).
A rare inelastic event effectively annihilates the photon
from a given standing-wave mode as if there is an intrinsic
absorption mechanism. Consequently, Fabry-Pérot reso-
nances would broaden by an amount y(w) < A. The
quantities 0 and v are linked to r as Inr = 2i6 — 2wy /A.
Thus, we reduced the scattering experiment in a prac-
tically impossible semi-infinite geometry to spectroscopy
of Fabry-Pérot cavity resonances in a finite-size system.
As long as the many-body level spacing of the final states



is smaller than the scattering rate, our finite-size system
behaves similarly to the semi-infinite one. We verified
the above condition in our setup (see Fig.4).

Following the previously established rf-spectroscopy
technique [14], we identified the frequency and intrinsic
linewidth of all standing-wave modes in the 5 — 10 GHz
range as a function of flux ® (Fig. 1c). The data is
taken while populating the modes with much less than
one quanta on average, and we checked that the spec-
troscopic line-shapes remained power-independent. The
impurity’s resonance has no effect at an integer flux bias
® =0, Dy (Pg = h/2¢), because then wy is detuned far
away towards the plasma cut-off w,. We used data at
Py = 0 to extract the dispersion relation and the value
of Z, also using the methods from Ref. [14]. As wp is
tuned through the spectrum, multiple modes simulta-
neously shift by an amount comparable to A, signal-
ing the achievement of superstrong coupling condition,
T > A [17, 30], required for multi-mode interaction ef-
fects. The new effect, though, is an over two orders of
magnitude variation of the modes linewidth v with flux.
At /Py ~ 0.475, the single impurity simultaneously
damps over 30 modes, spanning a considerable fraction of
the entire energy window. Moreover, the value of v near
5.5 GHz is such that photons largely disappear after a
single collision with the impurity (Fig. 1c, deep red).

Mode by mode, we accurately extracted the elastic
scattering phase 0 and the intrinsic loss rate v in ten
devices with varying parameters (Table S1). The phase
d(w) expectedly winds by 7 across the impurity resonance
(Fig. 2, top panels). A fit to the standard oscillator ex-
pression provides an accurate estimation of I and, there-
fore, E¢ (Fig. 2, upper panel). We checked that T' re-
mains flux-independent while growing from 0.6 GHz in
device Oa to 3.1 GHz in device 4a as the impurity junc-
tion is fabricated with progressively smaller area (larger
Ec¢) [18]. The loss rate is flux-independent in device Oa
with Fc = 0.39 GHz, and it can be explained by the
background dielectric absorption in Josephson transmis-
sion lines. However, already for E¢ = 0.66 GHz in device
la, there is a noticeable deviation of y(w) from the back-
ground at ® = 0, and this deviation rapidly grows with
Ec (Fig. 2, lower panels). The anomalous dissipation is
maximal for modes located in the I'-vicinity of the impu-
rity resonance at wg, defined in Fig. 2 as d(wg) = /2.

Subtracting the background loss of each device from
~v(w), we interpret the remaining rate i, (w) as the rate
of photon decay due to inelastic scattering at the im-
purity (Fig. 3). Several properties of 7, support our
interpretation. The maximal decay rate Yin(w = wp)
grows by an order of magnitude on reducing wg /27 by
only a few GHz. Such a strong frequency dependence of
~in(wo) eliminates the possibility of mundane absorption
due to either a lossy dielectric or quasiparticle tunneling
in the impurity junction. In fact, the growth of 7, (wp)
at lower frequencies is atypical to materials loss. Fur-

thermore, the rate 7i,(wg) vanishes in device la which
features the fastest variation of modes frequency with wq
(the sharpest function §(w) near w = wq in Fig. 2). Such
an observation eliminates the inhomogeneous broaden-
ing mechanism due to slow fluctuations of wy in time.
We have also checked that the measured port-coupling is
insensitive to flux-bias, and ~;, is insensitive to increasing
the port coupling [18].

Theory supports our interpretation of the anomalous
dissipation in terms of photon decay [18]. Specifically,
for « > 1, I' <« wg/2m, and Ec < Ej, the observed
photon decay can be quantitatively understood using the
following effective phase-slip Hamiltonian,

H= Z hwka;iak + vcosmq/e, (3)
k

acting at the subset of many-body states with energy
near hwg. The operators ag, (al) annihilate (create) pho-
tons at flux-dependent frequencies wyg, given by posi-
tions of the spectroscopic resonances (Fig. 1c) and the
effective phase-slip amplitude v is proportional to the
first Bloch band half-width A of the isolated junction.
The dynamical charge ¢ is decomposed over the normal
modes according to ¢ = >, fr(ax —&—al), where the factors
fE = (drA/awg) x wi/ ((wd —wi)? + (27Twy)?) weight
the contribution of individual k-modes. In contrast with
the Kerr non-linearity, the cosine term in Eq. 3 creates
a photon-photon interaction between all the k-modes at
all even orders. Because fi is maximal both at wy = wy
and at £ = 1, the dominant decay products consist of
one near-resonant photon and an even number of low-
frequency photons satisfying energy conservation condi-
tion. Restricting the calculation to such processes, the
inelastic rate for a resonant photon can be found from
the Fermi’s golden rule:

(7TI‘/(JJ0)2/Q72
(2/a — 1)!sin(n /)’

Yin(w = wo)/A = ()\/wo)2 B) (4)

Within the experimental uncertainty on model param-
eters, the Eq. (4) matches the data from all four de-
vices with a > 1 without adjustable parameters (Fig. 3a,
colored bands). Either increasing E¢ or reducing wy
with the flux-knob exponentially increases A, which in
turn causes a rapid growth of vin(wp). The effect of
« is weaker, but more complex. In particular, Eq. 4
breaks down for @ — 1, in which case photons are likely
produced in the entire frequency range. Devices with
a < 1 exhibit similar, by order of magnitude, decay rates
~in(wo), compared to those by devices with o > 1 with
similar values of F¢ (Fig. 3a vs. Fig. 3b). However, a
quantitative comparison in case o < 1 requires more ad-
vanced theoretical models than those presently available.

Let us illustrate the large number of decay channels
available for a single photon, using an example of mode
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FIG. 2. The elastic (top) and inelastic parts (bottom) of the reflection amplitude r(w) for the devices with progressively larger
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FIG. 3. Inelastic scattering rate vin(wo)/A (colored markers)
for devices with a > 1 (left panel) and « < 1 (right panel).
The width of theory lines (colored bands) comes from un-
certainty in the device parameters. The error bars are the
standard errors of vin/A at the resonance. The color code
represents nominally identical values of Ec.

47 in device 3a. The flux ® is tuned such that wy/27 =~
wyr /27 & 6.476 GHz, and the measured mode linewidth
~v47 = 11 MHz. Using extended spectroscopy data (Fig. 4,
left panel), we identified those three-photon and five-
photon combinations, whose energy matches fuvy7/27
within the half-linewidth h x 6.5 MHz. This construction
reveals a large number of states with a relatively uniform
three-photon (A®®) ~ 1 MHz, Fig. 4, blue states) and
five-photon (A®) ~ 50 kHz, Fig. 4, green states) level
spacing. Final states involving higher number of pho-
tons are also available and they would form even denser

spectrum. We checked that most three-photon states
with energies A(w; +w; +wy) couple relatively uniformly,
as estimated by their composite weights f; f; fi, and the
same applies to five-photon states. The energy unifor-
mity property comes from a small amount of disorder and
dispersion in the single-particle spectrum, which breaks
the otherwise massive degeneracy of multi-photon states.
These observations justify the treatment of our finite-size
transmission line as an infinite one in the derivation of
Eq. 4. On reducing the system size (increasing A), the
many-body spectrum will rapidly become sparse enough
to completely suppress the decay. Understanding such
energy localization transition in a nearly closed quantum
system, originally introduced in the context of Fermi-
quasiparticles in a quantum dot [31], would be a timely
extension of our experiment.

In summary, a quantum phase-slip center in high-
impedance superconducting waveguides can split a sin-
gle incident photon into a large number of lower-energy
photons with probability near unity. Inserting such an
efficient inelastic scattering center inside a closed Fabry-
Pérot resonator makes the photon lifetime comparable
to the round-trip time, in which case the standing-wave
resonances are damped by the photon-photon interac-
tion to the degree prohibiting the use of free-photon
description of the quantum electromagnetic field in the
resonator. Notably, the underlying regime of extreme
non-linearity in circuit quantum electrodynamics opens
the door to simulating strongly-correlated phenomena,
including superconductor-insulator transitions in one-
dimensional systems [32-34].

Looking ahead, our circuit spectroscopy technique can
be applied to simulate important quantum impurity mod-
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FIG. 4. An example of the many-body states satisfying en-
ergy conservation condition for the decay of the mode k = 47
in device 2a (wo & wa7). The many-body spectrum (right)
is obtained by summing all possible combinations of three
(blue) and five (green) one-photon frequencies, measured ex-
perimentally (left). Each bar’s height indicate the one-photon
amplitudes f (left, see text) and the relative amplitudes of
fififr and fif;frfifm of 3-photon and 5-photon states, re-
spectively. The frequency range in the right panel equals to
the measured half-linewidth of the k = 47 mode. The visual-
ization in the central panel illustrates the composition of the
multi-photon states from the measured one-photon spectrum.
Note the higher weight of the decay channels wi7 — wae +2w1
and w47 — was + 4w; involving the lowest frequency mode at
w1 /27 = 63 MHz.

els. For instance, reducing the junction size (increas-
ing E¢) would implement the BSG-model. Shunting
the weak junction by an inductance would implement a
spin-boson model, related to Anderson and Kondo mod-
els [35, 36], in which case a large inelastic scattering cross-
section was predicted near the Toulouse point [37]. Fur-
thermore, rapidly switching the impurity on and off with
the flux knob would induce controlled out-of-equilibrium
dynamics. The present measurement of r(w) already im-
plements an example analog quantum simulation of a
many-body quantity which is non-trivial to calculate oth-
erwise. We verified the simulation outcome in the param-
eter regime available to analytical calculations (Fig. 3,
left panel). The rest of data (Fig. 3, right panel) repre-
sents a unique quantum resource for benchmarking nu-
merical methods [38].
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