
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Inelastic Scattering of a Photon by a Quantum Phase Slip
R. Kuzmin, N. Grabon, N. Mehta, A. Burshtein, M. Goldstein, M. Houzet, L. I. Glazman, and

V. E. Manucharyan
Phys. Rev. Lett. 126, 197701 — Published 12 May 2021

DOI: 10.1103/PhysRevLett.126.197701

https://dx.doi.org/10.1103/PhysRevLett.126.197701


Inelastic scattering of a photon by a quantum phase-slip

R. Kuzmin,1 N. Grabon,1 N. Mehta,1 A. Burshtein,2 M.

Goldstein,2 M. Houzet,3 L. I. Glazman,4 and V. E. Manucharyan1

1Department of Physics, University of Maryland, College Park, Maryland 20742, USA.
2Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel.

3Univ. Grenoble Alpes, CEA, INAC-Pheliqs, F-38000 Grenoble, France.
4Department of Physics, Yale University, New Haven, CT 06520, USA.

(Dated: March 8, 2021)

Spontaneous decay of a single photon is a notoriously inefficient process in nature irrespective of
the frequency range. We report that a quantum phase-slip fluctuation in high-impedance supercon-
ducting waveguides can split a single incident microwave photon into a large number of lower-energy
photons with a near unit probability. The underlying inelastic photon-photon interaction has no
analogs in non-linear optics. Instead, the measured decay rates are explained without adjustable
parameters in the framework of a new model of a quantum impurity in a Luttinger liquid. Our re-
sult connects circuit quantum electrodynamics to critical phenomena in two-dimensional boundary
quantum field theories, important in the physics of strongly-correlated systems. The photon lifetime
data represents a rare example of verified and useful quantum many-body simulation.

Although photons have zero mass, fundamental laws
do not prevent their splitting into more photons as soon
as some form of non-linearity is present. Thus, indi-
vidual 100 MeV-photons split in the Coulomb field of
heavy nuclei because of vacuum polarization [1] and so
do optical photons in non-linear crystals via the pro-
cess of spontaneous parametric down-conversion [2, 3].
However, the splitting probability is extremely low, e.g.
it does not exceed 10−6 per cm of optical crystal, the
origin of which can be traced down to the small value
of the fine-structure constant. Interactions at the sin-
gle photon level are known to be dramatically enhanced
in circuit quantum electrodynamics (cQED), owing to
both the reduced mode volume of microwave transmis-
sion lines and the non-linearity of Josephson junctions [4].
Notable achievements include observations of vacuum
Rabi [5] and photon number [6] splittings, resonance
fluorescence [7], as well as implementations of multi-
mode [8] and ultrastrong coupling regimes [9, 10]. Yet,
spontaneous down-conversion remains improbable even in
cQED. The splitting of photons into two [11] or three [12]
ones was observed only under a strong stimulation of non-
linear circuits by a classical field, a process that can be
well understood using semi-classical wave mixing equa-
tions [13]. In stark contrast, we encountered an effi-
cient quantum mechanism of photon-photon interaction
in high-impedance superconducting waveguides. With-
out any external stimulus, it boosts the photon splitting
probability by many orders of magnitude to a value ap-
proaching unity.

The central part of our setup is a long on-chip “tele-
graph” transmission line terminated by a weak Josephson
junction (Fig. 1a, upper panel). Itself made of a chain
of 20,000 stronger junctions, the line implements a one-

dimensional vacuum with its wave impedance Z com-
parable to resistance quantum for Cooper pairs RQ =
h/(2e)2 ≈ 6.5 kΩ, which translates into an effective fine
structure constant α = Z/RQ of order unity [14, 15]. In
such a vacuum, microwave photons propagate as sound-
like transverse electro-magnetic excitations of the super-
conducting phase field ϕ(x, t), described by a quadratic
Luttinger liquid-like Lagrangian
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where v is the speed of light in the low-frequency limit
and the photon dispersion ω(k) = vk/

√
1 + (vk/ωp)2 has

a natural ultra-violet cutoff at ωp/2π ≈ 20 GHz, given by
the plasma resonance of the chain junctions. The weak
“impurity” junction presents a non-linear boundary at
x = 0 to the otherwise free field ϕ(x > 0, t), which results
in the following total system Lagrangian:

L = L0 + EJ(Φ) cosϕ(x = 0, t) +
~2ϕt(x = 0, t)2

16EC
. (2)

The Josephson energy EJ of the impurity junction is
tuned by an external flux Φ using superconducting quan-
tum interference device (SQUID) configuration, and the
charging energy EC = e2/2C is due to the oxide capac-
itance C. We focus on devices with EC . EJ , such
that the junction mimics a transmon qubit [16] with the
resonance at ω0 ≈

(
(8EJEC)1/2 − EC

)
/~ and classical

damping rate Γ = 4EC/hπα [17].

In a harmonic approximation, an incident photon at a
frequency ω would merely scatter off the junction elas-
tically with a phase shift δ(ω) = arctan((ω − ω0)/πΓ).
Inelastic scattering probability due to the conventional
self-Kerr non-linearity ∝ ϕ(x = 0)4 falls into the range
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FIG. 1. (a) Schematic of a telegraph transmission line terminated by a Josephson junction at the right end and weakly coupled
to a measurement port at the left end. Device photographs and microwave setup are shown in Ref. [14, 17]. The quantum field
ϕ(x, t) represents the superconducting phase-difference between the two wires of the line. Lower panel illustrates an inelastic
scattering process that splits an incident single photon at x = 0 in one resonant photon and even number of low-frequency
photons. (b) Quantum tunneling of the boundary variable ϕ(x = 0) in the periodic Josephson potential renders the energy of
the first excited level sensitive to quantum fluctuations of the dynamical charge q at the x = 0 end of the line. The sensitivity
of the ground state can be neglected. (c) The measured positions of standing wave resonances as a function of flux through
the split-junction loop in device 3a [18]. The color shows probability to lose a single photon in one round-trip time.

10−4 − 10−6 [17, 18] and is hardly measurable. How-
ever, a much more efficient non-linearity emerges for
α & 1 from the quantum phase-slip fluctuations across
the junction [19, 20]. Namely, tunneling of the phase
ϕ(x = 0) between the equivalent minima of the Joseph-
son energy renders the energy levels sensitive to the dy-
namical charge q [21–23] displaced at the junction end
of the transmission line (Fig. 1b). The quantum fluctu-
ations of q, unlike those of the boundary phase ϕ(x = 0)
around a single minimum, are not suppressed at any,
even low, frequency. That leads to a profound differ-
ence between the conversion processes induced by the
self-Kerr versus the phase-slips non-linearity. The latter
opens an infinite number of inelastic scattering channels
in the limit of the transmission line’s length l→∞: a sin-
gle incoming photon produces one outgoing photon of a
comparable frequency, accompanied by any even number
of low-frequency photons. Provided that the phase-slip
amplitude is reasonably large, a single incident photon
can split with a probability near unity [18].

The production of low-frequency photons in large
quantities has a deep connection to quantum impurity
physics [24]. In fact, for EC , ωp → ∞, Eqs. (1),(2) de-
fine the boundary sine-Gordon (BSG) quantum impurity
model with a critical point at α = 1 [25]. The BSG model
is important for its integrability property and for describ-
ing diverse condensed matter phenomena, from dissipa-
tive localization in a periodic potential [26, 27] to electron
tunneling in Luttinger liquids [28]. The critical dynamics
of the field ϕ manifest precisely by inelastic scattering of

its bulk excitations – photons in our case – off the non-
linear boundary [29]. If the scattering was limited to a
mere phase-shift, the boundary could be replaced by a
linear one, which would have eliminated interaction ef-
fects. Notably, calculating the reflection amplitude r(ω)
as a function of frequency ω is a difficult task, and it
becomes even more so in the presence of the EC-term,
which prevents using the exact BSG results. Therefore,
measuring r(ω) would accomplish a useful quantum sim-
ulation, which further motivates our experiment.

To measure r(ω) at x = 0 we introduce a second reflec-
tive boundary at x = l = 6 mm in the form of a weakly
coupled input/output port. A single photon impinging
at the impurity boundary can either scatter elastically
with a phase-shift δ(ω) or it can split into several left-
moving photons (Fig. 1a, lower panel). In both cases,
the left-moving photons bounce back at x = l and the
process repeats. If the elastic scattering dominates, the
two boundaries define a Fabry-Pérot resonator with a free
spectral range ∆ = v/(2l) ≈ 150 MHz, and the positions
of standing-wave mode resonances are linked to δ(ω).
A rare inelastic event effectively annihilates the photon
from a given standing-wave mode as if there is an intrinsic
absorption mechanism. Consequently, Fabry-Pérot reso-
nances would broaden by an amount γ(ω) � ∆. The
quantities δ and γ are linked to r as ln r = 2iδ− 2πγ/∆.
Thus, we reduced the scattering experiment in a prac-
tically impossible semi-infinite geometry to spectroscopy
of Fabry-Pérot cavity resonances in a finite-size system.
As long as the many-body level spacing of the final states
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is smaller than the scattering rate, our finite-size system
behaves similarly to the semi-infinite one. We verified
the above condition in our setup (see Fig.4).

Following the previously established rf-spectroscopy
technique [14], we identified the frequency and intrinsic
linewidth of all standing-wave modes in the 5 − 10 GHz
range as a function of flux Φ (Fig. 1c). The data is
taken while populating the modes with much less than
one quanta on average, and we checked that the spec-
troscopic line-shapes remained power-independent. The
impurity’s resonance has no effect at an integer flux bias
Φ = 0, Φ0 (Φ0 = h/2e), because then ω0 is detuned far
away towards the plasma cut-off ωp. We used data at
Φ0 = 0 to extract the dispersion relation and the value
of Z, also using the methods from Ref. [14]. As ω0 is
tuned through the spectrum, multiple modes simulta-
neously shift by an amount comparable to ∆, signal-
ing the achievement of superstrong coupling condition,
Γ � ∆ [17, 30], required for multi-mode interaction ef-
fects. The new effect, though, is an over two orders of
magnitude variation of the modes linewidth γ with flux.
At Φ/Φ0 ≈ 0.475, the single impurity simultaneously
damps over 30 modes, spanning a considerable fraction of
the entire energy window. Moreover, the value of γ near
5.5 GHz is such that photons largely disappear after a
single collision with the impurity (Fig. 1c, deep red).

Mode by mode, we accurately extracted the elastic
scattering phase δ and the intrinsic loss rate γ in ten
devices with varying parameters (Table S1). The phase
δ(ω) expectedly winds by π across the impurity resonance
(Fig. 2, top panels). A fit to the standard oscillator ex-
pression provides an accurate estimation of Γ and, there-
fore, EC (Fig. 2, upper panel). We checked that Γ re-
mains flux-independent while growing from 0.6 GHz in
device 0a to 3.1 GHz in device 4a as the impurity junc-
tion is fabricated with progressively smaller area (larger
EC) [18]. The loss rate is flux-independent in device 0a
with EC = 0.39 GHz, and it can be explained by the
background dielectric absorption in Josephson transmis-
sion lines. However, already for EC = 0.66 GHz in device
1a, there is a noticeable deviation of γ(ω) from the back-
ground at Φ = 0, and this deviation rapidly grows with
EC (Fig. 2, lower panels). The anomalous dissipation is
maximal for modes located in the Γ-vicinity of the impu-
rity resonance at ω0, defined in Fig. 2 as δ(ω0) = π/2.

Subtracting the background loss of each device from
γ(ω), we interpret the remaining rate γin(ω) as the rate
of photon decay due to inelastic scattering at the im-
purity (Fig. 3). Several properties of γin support our
interpretation. The maximal decay rate γin(ω = ω0)
grows by an order of magnitude on reducing ω0/2π by
only a few GHz. Such a strong frequency dependence of
γin(ω0) eliminates the possibility of mundane absorption
due to either a lossy dielectric or quasiparticle tunneling
in the impurity junction. In fact, the growth of γin(ω0)
at lower frequencies is atypical to materials loss. Fur-

thermore, the rate γin(ω0) vanishes in device 1a which
features the fastest variation of modes frequency with ω0

(the sharpest function δ(ω) near ω = ω0 in Fig. 2). Such
an observation eliminates the inhomogeneous broaden-
ing mechanism due to slow fluctuations of ω0 in time.
We have also checked that the measured port-coupling is
insensitive to flux-bias, and γin is insensitive to increasing
the port coupling [18].

Theory supports our interpretation of the anomalous
dissipation in terms of photon decay [18]. Specifically,
for α > 1, Γ � ω0/2π, and EC � EJ , the observed
photon decay can be quantitatively understood using the
following effective phase-slip Hamiltonian,

H =
∑
k

~ωka†kak + ν cosπq/e, (3)

acting at the subset of many-body states with energy
near ~ω0. The operators ak (a†k) annihilate (create) pho-
tons at flux-dependent frequencies ωk, given by posi-
tions of the spectroscopic resonances (Fig. 1c) and the
effective phase-slip amplitude ν is proportional to the
first Bloch band half-width λ of the isolated junction.
The dynamical charge q is decomposed over the normal
modes according to q =

∑
k fk(ak+a†k), where the factors

f2k = (4π∆/αωk) × ω4
0/
(
(ω2

0 − ω2
k)2 + (2πΓωk)2

)
weight

the contribution of individual k-modes. In contrast with
the Kerr non-linearity, the cosine term in Eq. 3 creates
a photon-photon interaction between all the k-modes at
all even orders. Because fk is maximal both at ωk = ω0

and at k = 1, the dominant decay products consist of
one near-resonant photon and an even number of low-
frequency photons satisfying energy conservation condi-
tion. Restricting the calculation to such processes, the
inelastic rate for a resonant photon can be found from
the Fermi’s golden rule:

γin(ω = ω0)/∆ = (λ/ω0)
2 (πΓ/ω0)

2/α−2

2(2/α− 1)! sin(π/α)
. (4)

Within the experimental uncertainty on model param-
eters, the Eq. (4) matches the data from all four de-
vices with α > 1 without adjustable parameters (Fig. 3a,
colored bands). Either increasing EC or reducing ω0

with the flux-knob exponentially increases λ, which in
turn causes a rapid growth of γin(ω0). The effect of
α is weaker, but more complex. In particular, Eq. 4
breaks down for α→ 1, in which case photons are likely
produced in the entire frequency range. Devices with
α < 1 exhibit similar, by order of magnitude, decay rates
γin(ω0), compared to those by devices with α > 1 with
similar values of EC (Fig. 3a vs. Fig. 3b). However, a
quantitative comparison in case α < 1 requires more ad-
vanced theoretical models than those presently available.

Let us illustrate the large number of decay channels
available for a single photon, using an example of mode
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FIG. 2. The elastic (top) and inelastic parts (bottom) of the reflection amplitude r(ω) for the devices with progressively larger
charging energy EC indicated on the plots. In each device, the flux Φ is tuned such that ω0/2π ≈ 6.5 − 7.5 GHz. The blue
markers show data at Φ = 0, where the impurity is effectively switched off. The dashed line represents the background dielectric
loss inside the transmission line. Device parameters are given in the Table S1 of supplementary material.

FIG. 3. Inelastic scattering rate γin(ω0)/∆ (colored markers)
for devices with α > 1 (left panel) and α < 1 (right panel).
The width of theory lines (colored bands) comes from un-
certainty in the device parameters. The error bars are the
standard errors of γin/∆ at the resonance. The color code
represents nominally identical values of EC .

47 in device 3a. The flux Φ is tuned such that ω0/2π ≈
ω47/2π ≈ 6.476 GHz, and the measured mode linewidth
γ47 = 11 MHz. Using extended spectroscopy data (Fig. 4,
left panel), we identified those three-photon and five-
photon combinations, whose energy matches ~ω47/2π
within the half-linewidth h×6.5 MHz. This construction
reveals a large number of states with a relatively uniform
three-photon (∆(3) ≈ 1 MHz, Fig. 4, blue states) and
five-photon (∆(5) ≈ 50 kHz, Fig. 4, green states) level
spacing. Final states involving higher number of pho-
tons are also available and they would form even denser

spectrum. We checked that most three-photon states
with energies ~(ωi+ωj +ωk) couple relatively uniformly,
as estimated by their composite weights fifjfk, and the
same applies to five-photon states. The energy unifor-
mity property comes from a small amount of disorder and
dispersion in the single-particle spectrum, which breaks
the otherwise massive degeneracy of multi-photon states.
These observations justify the treatment of our finite-size
transmission line as an infinite one in the derivation of
Eq. 4. On reducing the system size (increasing ∆), the
many-body spectrum will rapidly become sparse enough
to completely suppress the decay. Understanding such
energy localization transition in a nearly closed quantum
system, originally introduced in the context of Fermi-
quasiparticles in a quantum dot [31], would be a timely
extension of our experiment.

In summary, a quantum phase-slip center in high-
impedance superconducting waveguides can split a sin-
gle incident photon into a large number of lower-energy
photons with probability near unity. Inserting such an
efficient inelastic scattering center inside a closed Fabry-
Pérot resonator makes the photon lifetime comparable
to the round-trip time, in which case the standing-wave
resonances are damped by the photon-photon interac-
tion to the degree prohibiting the use of free-photon
description of the quantum electromagnetic field in the
resonator. Notably, the underlying regime of extreme
non-linearity in circuit quantum electrodynamics opens
the door to simulating strongly-correlated phenomena,
including superconductor-insulator transitions in one-
dimensional systems [32–34].

Looking ahead, our circuit spectroscopy technique can
be applied to simulate important quantum impurity mod-
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FIG. 4. An example of the many-body states satisfying en-
ergy conservation condition for the decay of the mode k = 47
in device 2a (ω0 ≈ ω47). The many-body spectrum (right)
is obtained by summing all possible combinations of three
(blue) and five (green) one-photon frequencies, measured ex-
perimentally (left). Each bar’s height indicate the one-photon
amplitudes fk (left, see text) and the relative amplitudes of
fifjfk and fifjfkflfm of 3-photon and 5-photon states, re-
spectively. The frequency range in the right panel equals to
the measured half-linewidth of the k = 47 mode. The visual-
ization in the central panel illustrates the composition of the
multi-photon states from the measured one-photon spectrum.
Note the higher weight of the decay channels ω47 → ω46 +2ω1

and ω47 → ω45 + 4ω1 involving the lowest frequency mode at
ω1/2π = 63 MHz.

els. For instance, reducing the junction size (increas-
ing EC) would implement the BSG-model. Shunting
the weak junction by an inductance would implement a
spin-boson model, related to Anderson and Kondo mod-
els [35, 36], in which case a large inelastic scattering cross-
section was predicted near the Toulouse point [37]. Fur-
thermore, rapidly switching the impurity on and off with
the flux knob would induce controlled out-of-equilibrium
dynamics. The present measurement of r(ω) already im-
plements an example analog quantum simulation of a
many-body quantity which is non-trivial to calculate oth-
erwise. We verified the simulation outcome in the param-
eter regime available to analytical calculations (Fig. 3,
left panel). The rest of data (Fig. 3, right panel) repre-
sents a unique quantum resource for benchmarking nu-
merical methods [38].
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