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The standard model of spin-transfer torque (STT) in antiferromagnetic spintronics considers ex-
change of angular momentum between quantum spins of flowing electrons and noncollinear-to-them
localized spins treated as classical vectors. These vectors are assumed to realize Néel order in equi-
librium, ↑↓ . . . ↑↓, and their STT-driven dynamics is described by the Landau-Lifshitz-Gilbert
(LLG) equation. However, many experimentally employed materials (such as archetypal NiO) are
strongly electron-correlated antiferromagnetic Mott insulators (AFMIs) whose localized spins form
a ground state quite different from the unentangled Néel state |↑↓ . . . ↑↓〉. The true ground state
is entangled by quantum spin fluctuations, leading to expectation value of all localized spins being
zero, so that LLG dynamics of classical vectors of fixed length rotating due to STT cannot even
be initiated. Instead, a fully quantum treatment of both conduction electrons and localized spins
is necessary to capture exchange of spin angular momentum between them, denoted as quantum
STT. We use a recently developed time-dependent density matrix renormalization group approach
to quantum STT to predict how injection of a spin-polarized current pulse into a normal metal
layer coupled to AFMI overlayer via exchange interaction and possibly small interlayer hopping—
mimicking, e.g., topological-insulator/NiO bilayer employed experimentally—will induce nonzero
expectation value of AFMI localized spins. This new nonequilibrium phase is a spatially inhomoge-
neous ferromagnet with zigzag profile of localized spins. The total spin absorbed by AFMI increases
with electron-electron repulsion in AFMI, as well as when the two layers do not exchange any charge.

Introduction.—The emergence of antiferromagnetic
spintronics [1–4] has elevated antiferromagnetic (AF) in-
sulators (AFIs) and metals into active elements of spin-
tronic devices. They exhibit dynamics of their localized
spins at a much higher frequencies, reaching THz [4],
when compared to ferromagnetic spintronics. Further-
more, the absence of net magnetization forbids any stray
magnetic fields, making them largely insensitive to per-
turbations by external fields. They also exhibit mag-
netoresistance effects [5, 6] enabling electric readout of
changes in the orientations of their localized spins.

Basic spintronic phenomena like spin-transfer torque
(STT) [7–10], where spin angular momentum is ex-
changed between flowing conduction electrons and
noncollinear-to-them [11] localized spins; and spin pump-
ing [12], where precessing localized spins pump pure spin
current in the absence of any bias voltage, have been
demonstrated recently using different AF materials. The
theoretical description [13–22] of these phenomena in-
variably assumes that localized magnetic moments on
two sublattices of the AF material, MA

i and MB
i , are

classical vectors with net zero total magnetization in
equilibrium due to assumed Néel classical ground state
(GS), ↑↓ . . . ↑↓. Out of equilibrium, the dynamics of
such classical vectors of fixed length is described by the
Landau-Lifshitz-Gilbert (LLG) equation [23]. The STT
is typically introduced into the LLG equation either as
a phenomenological term [17–20], or it is calculated mi-
croscopically by using steady-state single-particle quan-
tum transport formalism applied to model [13, 14, 21] or
first-principles [15, 16, 22] Hamiltonians of AF materials.
Recently STT [24] from time-dependent single-particle
quantum transport formalism [25] has been coupled [26]

to the LLG equation, capturing additional quantum ef-
fects like electronic spin pumping by moving MA

i (t)
and MB

i (t) and the corresponding enhanced damping on
them, but this remains conventional [11] quantum-for-
electrons–classical-for-localized-spins approach to STT.

However, AFIs employed in spintronics experiments
are typically strongly electron-correlated transition metal
oxides due to narrow d bands. For example, widely
used [6–10] NiO shares features of both Mott and charge-
transfer insulators [27–30]. Due to quantum (or zero-
point) spin fluctuations [31–33], the AF GS is highly
entangled [32–35, 37], which results in zero expecta-

tion value of all localized spins, Si = 0 (so, MA,B
i ∝

SA,Bi = 0). Thus, conventional [11] STT ∝ si × Si = 0
due to injected nonequilibrium electronic spin density
si cannot be initiated because Si(t = 0) ≡ 0. Even if
|Si(t = 0)| 6= 0 is provoked by spin-rotation-symmetry-
breaking anisotropies [38] or impurities [see Supplemental
Material (SM) [39] for illustration], the LLG equation is
inapplicable [41, 42] because the length |Si(t)| < |SNéel

i |
will be changing in time, with smaller value signifying
higher entanglement (unobserved quantum systems ex-
hibit unitary evolution toward states of higher entangle-
ment [43]). Thus, both situations necessitate to describe
localized spins fully quantum mechanically where their ex-
pectation values Si(t) are calculated only at the end.

The entanglement in the AF GS leading to Si = 0
can be illustrated using a one-dimensional (1D) quan-
tum spin- 1

2 Heisenberg AF chain [44, 45] as the simplest
example of AFI defined on NAFI sites:

ĤAFI = J

NAFI−1∑
i=1

Ŝi · Ŝi+1. (1)
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FIG. 1. (a) Schematic view of a “bilayer” [10] for tDMRG
calculations. The 1D TB chain (blue dots) of N = NL +
NAFMI + NR = 92 sites, with intrachain hopping γ, mod-
els the metallic surface (such as that of topological insula-
tor Bi2Se3 in experiments of Ref. [10]) through which spin-
polarized current pulse is injected. The pulse exerts quantum
STT on a Hubbard chain of NAFMI = 12 sites with the on-
site Coulomb repulsion U , modeling the surface of a strongly
electron-correlated AFMI (such as that of NiO in Refs. [7–
10]). The electronic spins in two chains interact via inter-
chain exchange interaction Jv, and we consider both γv = 0
and γv 6= 0 interchain hopping where the latter mimics possi-
ble hybridization of NM and AFMI via evanescent wavefunc-
tions [22]. For times t < 0, Ne = 12 noninteracting electrons
are confined by potential V within Nconf = 25 sites of the L
lead (composed of NL = 40 sites), as well as spin-polarized by
an external magnetic field Be along the z-axis. Concurrently,
NAFMI

e = 12 electrons half-fill the AFMI chain. For times
t ≥ 0, V and Be are removed, so that electrons propagate as
spin-polarized current pulse from the L to the R lead, as ani-
mated in the movie in the SM [39]. In panel (c), AFMI from
(a) and (b) is replaced by AFI modeled as quantum Heisen-
berg AF chain whose spin- 1

2
operators reside on each (orange)

site and interact via J = 4γ2/U in Eq. (1) while no electrons
are allowed within this chain.

Here Ŝαi = Î1 ⊗ . . . ⊗ 1
2 σ̂

α ⊗ . . . ⊗ ÎNAFI
acts nontriv-

ially, as the Pauli matrix σ̂α, only on the Hilbert space
of site i; Îi is the unit operator; and J > 0 is AF ex-
change interaction. The true GS is easy to write explic-
itly for small NAFI, such as for NAFI = 4 we find |GS〉 =

1√
12

(
2|↑↓↑↓〉+2|↓↑↓↑〉−|↑↑↓↓〉−|↑↓↓↑〉−|↓↓↑↑〉−|↓↑↑↓〉

)
.

Its energy, 〈GS|ĤAFI|GS〉 = −2J , is lower than the en-
ergy of the unentangeled (i.e., direct-product) Néel state,
〈↑↓↑↓|ĤAFI|↑↓↑↓〉 = −J . This is in sharp contrast to fer-
romagnets where quantum spin fluctuations are absent,
and both classical ↑↑ . . . ↑↑ and its unentangled quantum

counterpart |↑↑ . . . ↑↑〉 are GS of the respective classical
and quantum Hamiltonians [such as Eq. (1) with J < 0].
This justifies [41, 42] the picture of interacting classical
Mi in spintronics [11] and micromagnetics [23], even as
the size of the localized spin is reduced to that of a sin-
gle electron spin. Conversely, in the case of many-body
entangled [32–35, 37] AF GS, the quantum state of each
localized spin subsystem must be described by the re-
duced density matrix, ρ̂i = Trother |GS〉〈GS|, where par-
tial trace is performed in the Hilbert subspace of all other
localized spins j 6= i. The expectation value

Si ≡ 〈Ŝi〉 = Tr [ρ̂iŜi], (2)

is then identically zero vector, Si = 0, on all sites (see
the SM [39]). The GS in the limit NAFI → ∞ is com-
putable by Bethe ansatz [45], and its entanglement en-
sures Si = 0. The entanglement in the GS of crystalline
realization of 1D [36] and two-dimensional (2D) [37]
quantum Heisenberg antiferromagnets, as well as of AF
Mott insulator (AFMI) [46] realized with cold atoms on
a square lattice, has been detected by neutron scattering
or optically, respectively, at ultralow temperatures.

In this Letter, we employ the emerging concept
of quantum STT [47–50] where both conduction elec-
trons and localized spins are treated fully quantum-
mechanically to describe the exchange of spin angular
momentum between them. This allows us to predict
nonequilibrium phase transition of AFMI driven by ab-
sorption of spin angular momentum from spin-polarized
current pulse injected into an adjacent normal metal
(NM). To model such genuine quantum many-body prob-
lem, we evolve in time a nonequilibrium quantum state
of NM/AFMI system via very recently adapted [49] to
quantum STT time-dependent density matrix renormal-
ization group (tDMRG) approach [51–55].

Our system geometry in Fig. 1 consists of a NM mod-
eled as 1D tight-binding (TB) chain, which is split into
the left (L) and the right (R) leads sandwiching a cen-
tral region. The conduction electron spins in the central
region are exchange coupled to an AFMI chain modeled
by Hubbard model with the on-site Coulomb repulsion
U . The current pulse, carrying electrons initially spin-
polarized in the direction perpendicular to the interface
(i.e., along the z-axis in Fig. 1), is injected from the L
lead into the central region of NM in order to initiate the
AFMI dynamics via quantum STT. Our geometry mim-
ics recent experiment [10] on injection of current pulses
into metallic surface of a topological insulator Bi2Se3,
which then exert spin torque on the surface of NiO over-
layer covering Bi2Se3, except that in the experiment spin-
orbit coupling polarizes injected electrons in the plane of
the interface (i.e., along the y-axis in Fig. 1). Neverthe-
less, since singlet with s′i(t = 0) ≡ 0 on all sites of AFMI
is rotationally invariant, the final spin state of AFMI
driven by quantum STT will be the same for arbitrary
spin-polarization of injected electrons.
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FIG. 2. Spatio-temporal profiles of the z-component of spin
density within: (a) AFMI chain with the Coulomb repulsion
U = 8γ; and (c) the same chain with U = 0 (acting then as the
second NM chain half-filled with electrons). In both panels
s′zi (t = 0) ≡ 0, so that only s′zi (t) 6= 0 component is induced
by current pulse spin-polarized along the z-axis and flowing
along the bottom NM chain in Fig. 1(b) whose szi profiles in
panels (b) and (d) are driving the profiles in panels (a) and (c),
respectively, via quantum STT. The dotted horizontal lines
in (b) and (d) mark the boundaries between the leads and
the central region of the NM chain in Fig. 1. The interchain
exchange is Jv = 0.5γ and hopping γv = 0 in Eq. (5). All four
panels, together with the corresponding electron densities, are
animated in the movie in the SM [39].

Our main results in Figs. 2–5 demonstrate how quan-
tum STT deposits spin angular momentum [Figs. 4 and
5] into the AFMI by driving its on-site electronic spin
expectation value from s′i(t = 0) ≡ 0 in equilibrium
toward spatially inhomogeneous profile [Figs. 2(a) and
3], s′zi (t) 6= 0 [s′xi (t) = 0 = s′yi (t)] with zigzag pattern
s′z2j−1(t) < s′z2j(t) for j = 1, . . . , NAFMI/2. The total spin
angular momentum absorbed by AFMI increases with the
on-site Coulomb repulsion [Fig. 5(a)], but it is reduced
[Figs. 4(c)] when the interchain hopping allows for hy-
bridization of NM and AFMI and electron leakage from
AFMI [Fig. 4(a)] into NM [Fig. 4(b)]. Prior to delving
into the results, we introduce notation and concepts.

Models and methods.—The second-quantized many-
electron Hamiltonian describing the NM/AFMI system
in Fig. 1(a) consists of four terms

Ĥ = ĤNM + ĤAFMI + ĤNM−AFMI + ĤV,B(t < 0). (3)

The first term is 1D TB Hamiltonian of noninteracting
electrons within NM chain ĤNM = −γ

∑N
i=1(ĉ†i↑ĉi+1↑ +

ĉ†i↓ĉi+1↓ + h.c.) where ĉ†iσ (ĉiσ) creates (annihilates) an
electron with spin σ =↑, ↓ at site i, and γ is the intrachain
hopping. These operators act on four possible states at
each site i—vacuum |0〉, spin-up |↑〉, spin-down |↓〉, and
doubly occupied state |↑↓〉, so that total Hilbert space of

U = Time = 25

0.4

FIG. 3. Spatial profile of the z-component s′zi of spin density
within AFMI chain in Fig. 1(b) driven by quantum STT from
NM chain: (a) at different times using U = 8γ in Eq. (4); and
(b) for different U values at time t = 25~/γ. The interchain
exchange is Jv = 0.5γ and hopping γv = 0 in Eq. (5).

NM/AFMI system has dimension 492 × 412. The inter-
acting electrons within the AFMI chain are described by
the Hubbard Hamiltonian [44, 45]

ĤAFMI = −γ
NAFMI−1∑

i=1

(
d̂†i↑d̂i+1↑ + d̂†i↓d̂i+1↓ + h.c.

)
+U

NAFMI∑
i=1

n̂′i↑n̂
′
i↓. (4)

Here, n̂′iσ = d̂†iσd̂iσ are electron density (per site) oper-
ator for spin σ at site i of AFMI. The on-site Coulomb
repulsion, such as U = 0–10γ in Fig. 3(b), is expressed
in the units of hopping γ (typically γ = 1 eV) which we
use as a unit of energy. The operators for the total num-
ber of electrons, N̂AFMI

e =
∑
i n̂
′
i, and total spin along

the α-axis, ŝ′α =
∑
i ŝ
′α
i , are given by the sum of elec-

tron and spin density operators, n̂′i =
∑
σ={↑,↓} d̂

†
iσd̂iσ

and ŝα′i =
∑
σ={↑,↓} d̂

†
iσ

1
2 σ̂

α
σσ′ d̂iσ′ , respectively. The in-

terchain exchange interaction Jv between electronic spins
within NM and AFMI is described by

ĤNM−AFMI = −Jv

NAFMI∑
i=1

ŝi+NL
· ŝ′i

− γv

NAFMI∑
i=1

(
ĉ†i+NL↑d̂i↑ + ĉ†i+NL↓d̂i↓ + h.c.

)
, (5)

where ŝi and ŝ′i are spin density (per site) operators in
NM and AFMI chains, respectively. Here we also add
a term with possible γv 6= 0 hopping between NAFMI

sites of the central region of the NM chain and NAFMI

sites of AFMI in Fig. 1(a), which can arise in realis-
tic devices used in spintronics [7–10] due to evanescent
wavefunctions [22]. They penetrate from the NM sur-
face into the region of AFMI near the interface, thereby
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FIG. 4. Time dependence of the total number of electrons
within (a) AFMI and (b) NM chains in the setup of Fig. 1(b)
for two different interchain hoppings γv = 0 (blue lines) and
γv = 0.1γ (red lines). Panels (c) and (d) show the corre-
sponding time dependence of the sum of the z-component
of spin densities,

∑
i s
′z
i and

∑
i s

z
i , respectively. The on-site

Coulomb repulsion is U = 8γ [Eq. (4)] within the AFMI and
interchain exchange interaction is Jv = 0.5γ.

leading to charge transfer in equilibrium or current leak-
age between the two materials [22]. Such normal-metal
proximity effect on finite-size Mott insulators can also
create exotic many-body states in equilibrium [56]. To
prepare the initial state of the conduction electrons in
the NM chain, we confine them within Nconf sites of the
L lead in Fig. 1(a) and polarize their spins along the
+z-axis by means of an additional term ĤV,B(t < 0) =

−V
∑Nconf

i=1

(
ĉ†i↑ĉi↑ + ĉ†i↓ĉi↓

)
−
∑Nconf

i=1 gµBŝ
z
iB

z
e . Here

V = 2γ is the confining potential; Bze is the external
magnetic field; and gµBB

z
e = 10γ, where g is the electron

gyromagnetic ratio and µB is the Bohr magneton. After
the initial state is prepared for t < 0, ĤV,B(t ≥ 0) is set
to zero, so that spin-polarized electrons from the L lead
propagate toward the R lead, as illustrated in Fig. 1(b),
computed in Fig. 2 and animated in the SM [39].

In the limit U � γ, the half-filled (ni = 1) 1D Hub-
bard model describes electrons localized one per site, so
it can be mapped [44, 45] to an isotropic quantum spin- 1

2
Heisenberg AF chain with the effective Hamiltonian given
in Eq. (1). Therefore, for comparison we also analyze the
NM/AFI setup in Fig. 1(c) where AFI sites hosts local-

ized spin- 1
2 operators Ŝi, as described by the Hamiltonian

Ĥ = ĤNM + ĤAFI + ĤNM−AFI + ĤV,B(t < 0). Here ĤNM

is the same as in Eq. (3); ĤAFI is the same as in Eq. (1)
where we use J = 4γ2/U as the exchange interaction
in the limit U � γ [44, 45]; the interchain interaction

is described by ĤNM−AFI = −Jv

∑NAFI

i=1 ŝi+NL · Ŝi where

Jv = 0.5γ; and ĤV,B(t < 0) is the same as in Eq. (3).

The tDMRG simulations [51–55] evolve the
nonequilibrium state of the whole system in Fig. 1,

FIG. 5. (a) Time evolution of the sum of spin densities within
NM chain

∑
i s

z
i (dashed lines) and AFMI chain

∑
i s
′z
i (solid

lines) in the setup of Fig. 1(b) for different value of the on-site
Coulomb repulsion U within the AFMI chain. For compar-
ison, panel (b) plots the same information for the setup in
Fig. 1(c) where AFMI is replaced by AFI, modeled by quan-
tum spin- 1

2
Heisenberg AF chain with no electrons, so that

solid lines are
∑

i S
z
i where Sz

i is obtained from Eq. (2). For
each U in (a), we set the corresponding intrachain exchange
interaction J [Eq. (1)] within AFI in (b) as J = 4γ2/U .

|Ψ(t+ δt)〉 = e−iĤδt/~|Ψ(t)〉, using the time step
δt = 0.1~/γ. Additional details of tDMRG simulations
are provided in the SM [39].

Results and discussion.—The Hubbard 1D chain mod-
eling the AFMI possesses a sizable energy gap ∆c for
charge excitations at U & 2γ, whose value is exactly
known [45] in the limit NAFMI → ∞ (∆c = 0.173γ at
U = 2γ; or ∆c = 0.631γ at U = 3γ). In chains of fi-
nite length, such as ours with NAFMI = 12 sites, DMRG
predicts slightly larger ∆c values [57]. However, the spin
sector of the half-filled Hubbard chain is gapless in the
thermodynamic limit. This means that injecting a charge
in the AFI is energetically costly, but creating a spin ex-
citation is not. Figures 2(a) and 3 demonstrate that
AFMI with U & 4γ will be driven out of its GS with
s′i = 0 on all sites toward a nonequilibrium phase with
s′zi (t) 6= 0 and s′xi = 0 = s′yi due to quantum STT exerted
by injected current pulse in the NM chain that is spin-
polarized along the z-axis. The spatial profile of s′zi (t) is
inhomogeneous with a zigzag pattern deep in the Mott
insulator phase, which distinguishes it from the weak re-
sponse of the borderline case with U = 2γ [Fig. 3(b)] or
noninteracting chain with U = 0 [Figs. 2(c) and 3(b)].

Even after the current pulse in the NM chain has
ended, the spin angular momentum remains deposited
within AFMI, with its total value increasing with U
[Fig. 5(a)]. Such Mott insulator transmuted into a phase
with nonzero total magnetization remains magnetized
also when intrachain hopping is switched on, γv = 0.1γ,
in Fig. 4(c). However, γv = 0.1γ allows electrons to leak
from AFMI [Fig. 4(a)] into NM [Fig. 4(b)] chain, so that
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total spin deposited into AFMI is reduced in Fig. 4(c)
when compared to isolated AFMI.

Figure 5 explains quantum STT [47–50] as the transfer
of total spin angular momentum from NM conduction
electrons (dashed lines in Fig. 5) to confined electrons
within the AFMI [solid lines in Fig. 5(a)] or to localized
spins within the AFI [solid lines in Fig. 5(b)]. While some
spin transfer exists even for U = 0, it is dramatically
enhanced by increasing U to establish AFMI [Fig. 5(a)].
The NM/AFMI case with U = 10γ shows that

∑
i s
′z
i (t)

within AFMI is nearly identical to
∑
i S

z
i (t) within AFI

with J = 4γ2/U , as anticipated from mapping [44, 45]
of AFMI to AFI in the limit U � γ. However, this
correspondence fails for U < 10γ. The absorbed spin by
AFMI or AFI can be viewed as multiple excitations of
any two-spinon or higher-order spinon states [58], as long
as they are compatible with total angular momentum
conservation [49].

Conclusions.— In conclusion, we demonstrate how
tDMRG [51–55] adapted [49] for quantum STT [47–
50] makes it possible to study spin transfer into
strongly electron-correlated antiferromagnets. In con-
trast, quantum-classical theory of conventional STT [11,
13–22] would conclude that entangled AF true GS does
not undergo any current-driven dynamics when its local-
ized spins have zero expectation value at t = 0 as the
initial state used in this study. Although tDMRG has
been previously applied to study charge current through
AFMI [59–61] or spin-charge separation [62] in geome-
tries where electrons are injected into AFMI by finite
bias voltage, spin-dependent transport phenomena in ge-
ometries like Fig. 1 of relevance to spintronics [7–10]
remain unexplored. Realistic spintronic devices would
require to consider 2D or three-dimensional geometries.
But Keldysh Green functions [25, 63], as the only avail-
able nonequilibrium quantum many-body formalism for
higher dimensions and longer times, cannot at present
access large U with perturbative self-energies [57, 63],
or its nonperturbative implementation can handle [64]
only a very few sites. Therefore, this study represents a
pivotal test case that provides intuition about quantum
STT phenomena in strongly correlated and/or entangled
quantum materials, as well as a benchmark [63] for any
future developments via the Keldysh Green functions.
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torque on a two-dimensional magnet within van der
Waals heterostructure: Current-driven antiferromagnet-
to-ferromagnet reversible nonequilibrium phase transi-
tion in bilayer CrI3, Nano Lett. 20, 2288 (2020).

[23] R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler,
M. O. A. Ellis, and R. W. Chantrell, Atomistic spin
model simulations of magnetic nanomaterials, J. Phys.:
Condens. Matter 26, 103202 (2014).

[24] A. Suresh, M. D. Petrović, H. Yang, and B. K. Nikolić,
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[31] A. Singh and Z. Tešanović, Quantum spin fluctuations
in an itinerant antiferromagnet, Phys. Rev. B 41, 11457
(1990).

[32] S. Humeniuk, Quantum state tomography on a plaquette
in the two-dimensional Hubbard model, Phys. Rev. B
100, 115121 (2019).

[33] A. Kamra, E. Thingstad, G. Rastelli, R. A. Duine, A.
Brataas, W. Belzig, and A. Sudbø, Antiferromagnetic
magnons as highly squeezed Fock states underlying quan-
tum correlations, Phys. Rev. B 100, 174407 (2019).

[34] T. Roscilde, P. Verrucchi, A. Fubini, S. Haas, and V.
Tognetti, Entanglement and factorized ground states in
two-dimensional quantum antiferromagnets, Phys. Rev.
Lett. 94, 147208 (2005).

[35] O. Vafek, N. Regnault, and B. A. Bernevig, Entangle-
ment of exact excited eigenstates of the Hubbard model
in arbitrary dimension, SciPost Phys. 3, 043 (2017).

[36] S. Sahling, G. Remenyi, C. Paulsen, P. Monceau, V.
Saligrama, C. Marin, A. Revcolevschi, L. P. Regnault,
S. Raymond, and J. E. Lorenzo, Experimental realiza-
tion of long-distance entanglement between spins in an-
tiferromagnetic quantum spin chains, Nat. Phys. 11, 255
(2015).

[37] N. B. Christensen, H. M. Rønnow, D. F. McMorrow, A.
Harrison, T. G. Perring, M. Enderle, R. Coldea, L. P.

Regnault, and G. Aeppli, Quantum dynamics and entan-
glement of spins on a square lattice, PNAS 104, 15264
(2007).

[38] E. M. Stoudenmire and S. R. White, Studying two-
dimensional systems with the density matrix renormal-
ization group, Annu. Rev. Condens. Matter Phys. 3, 111
(2011).

[39] See Supplemental Material at https://wiki.physics.

udel.edu/qttg/Publications, which includes Ref. [40],
for: (i) movie animating time evolution of spin densities,
s′zi (t) and szi (t), from Fig. 2, as well as time evolution
of electron densities, n′zi (t) and nz

i (t), within upper and
lower chains in Fig. 1 for the same two setups (U = 8γ
and U = 0) used in Fig. 2; (ii) text with additional details
of tDMRG simulations, as well as with one additional
Figure showing spatial profiles of the expectation value
[Eq. (2)] of spin operator Si in both 1D and 2D quan-
tum spin- 1

2
Heisenberg antiferromagnets [Eq. (1)] which

possess global spin rotation invariance or they contain a
single symmetry-breaking impurity generating local mag-
netic field at one site.

[40] J. Gray, QUIMB: A Python library for quantum informa-
tion and many-body calculations, J. Open Source Softw.
3, 819 (2018).

[41] R. Wieser, Description of a dissipative quantum spin dy-
namics with a Landau-Lifshitz-Gilbert like damping and
complete derivation of the classical Landau-Lifshitz equa-
tion, Euro. Phys. J. B 88, 77 (2015).

[42] R. Wieser, Derivation of a time dependent Schrödinger
equation as the quantum mechanical Landau-Lifshitz-
Bloch equation, J. Phys.: Condens. Matter 28, 396003
(2016).

[43] B. Skinner, J. Ruhman, and A. Nahum, Measurement-
induced phase transitions in the dynamics of entangle-
ment, Phys. Rev. X 9, 031009 (2019).

[44] E. Fradkin, Field Theories of Condensed Matter Physics
(Cambridge University Press, Cambridge, 2013).

[45] F. H. Essler, H. Frahm, F. Göhmann, A. Klümper, and V.
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