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The near-field electromagnetic interaction between nanoscale objects produces enhanced radiative
heat transfer that can greatly surpass the limits established by far-field black-body radiation. Here,
we present a theoretical framework to describe the temporal dynamics of the radiative heat transfer
in ensembles of nanostructures, which is based on the use of an eigenmode expansion of the equations
that govern this process. Using this formalism, we identify the fundamental principles that determine
the thermalization of collections of nanostructures, revealing general but often unintuitive dynamics.
Our results provide an elegant and precise approach to efficiently analyze the temporal dynamics of
the near-field radiative heat transfer in systems containing a large number of nanoparticles.

The thermal radiation exchanged between macroscopic
bodies separated by macroscopic distances is accurately
described by Planck’s law [1]. However, this descrip-
tion breaks down when the distance between objects
or their size becomes significantly smaller than the so-
called thermal wavelength, which, for a temperature T ,
is λT = 2πh̄c/(kBT ). In this limit, the contribution of
near-field components of the electromagnetic field [2–10],
together with the strong responses provided by the elec-
tromagnetic resonances of nanostructures [11–18], results
in enhanced radiative heat transfer (RHT), which can
surpass the black-body limit by several orders of magni-
tude [19–23].

Near-field RHT is usually described within the frame-
work of fluctuational electrodynamics [23, 24]. In par-
ticular, when considering collections of nanostructures, a
dipole approximation, where each nanoparticle is mod-
eled as a fluctuating dipole, can be exploited [16, 23, 25–
27]. By doing so, it is possible to calculate the power
transferred between the different constituents for a par-
ticular fixed distribution of temperatures [16, 28–30].
However, if one is interested in understanding the tempo-
ral evolution of the particle temperatures, this approach
presents several disadvantages. Specifically, since the
power transferred between the particles depends on their
temperatures, which change over time, it is necessary to
perform a new calculation at each step in the temporal
evolution [31–34]. As a result, this approach provides lit-
tle insight into the fundamental principles that determine
the thermalization dynamics, requires separate calcula-
tions for each initial condition, and, in addition, can be
computationally unfeasible when the number of particles
is sufficiently large.

In this letter, we present a different approach to
describe the thermalization dynamics of ensembles of
nanoparticles. Our approach is based on linearizing the
equations that govern the power transferred between the
nanoparticles, which allows us to convert them into an
eigenvalue problem. By doing so, we find a set of RHT
eigenmodes for the ensemble, which completely describe

the evolution of the system under any possible initial
temperature distribution. Eigenmode expansions have
been applied to a vast range of topics as a way to reveal
physical insight [35–39]. Here, using this approach, we
identify the general principles that control the thermal-
ization process mediated by near-field RHT, which often
give rise to unintuitive behaviors. This insight leads us
to explore exotic scenarios, including dynamics in which
the temperature of a particle oscillates around the equi-
librium temperature as it thermalizes. The simplicity of
this formalism makes it an elegant and efficient method
to describe the dynamics of the near-field RHT in ensem-
bles with many nanoparticles.

We consider an ensemble of N nanospheres with radii
Ri and temperatures Ti, placed at positions ri and sur-
rounded by vacuum at T0, which we fix to 300 K for the
remainder of this letter. We assume that, for all par-
ticles, Ri � λT and all interparticle distances dij =
|ri − rj | ≥ 4 max(Ri, Rj), but significantly smaller than
λT . Therefore, we model the nanoparticles as fluctuating
dipoles with electric polarizabilities αi. Following previ-
ous works [25–27, 31], the power absorbed by particle i
is (see [40] for details)

Pi =

N∑
j=1

∫ ∞
0

dωfij(ω) [n(ω, Tj)− n(ω, T0)] , (1)

where n(ω, T ) = [exp(h̄ω/kBT )− 1]
−1

is
the Bose-Einstein distribution and fij(ω) =
(2h̄ω/π)Tr

[
Im
{
AijIm{χj}C+

ij

}]
. In this expres-

sion, “+” represents the conjugate transpose, the
trace is taken over Cartesian components, and the
different matrices, with dimensions 3N × 3N , are
defined as: A = [I −αG]

−1
, C =

(
G + G0

)
A, and

χ = α −G0α+α, with I being the identity matrix, α
a matrix with the polarizabilities, G the dipole-dipole

interaction tensor, and G0 = 2iω3

3c3 I. This model can
be generalized to particles with magnetic response by
including a magnetic polarizability [16, 30].

The temporal evolution of the temperatures of the
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FIG. 1: (a) Schematics of the systems under study. (b) Decay
rates of the RHT eigenmodes of the two systems assuming
R = 25 nm and d = 4R. The insets display the components
of the RHT eigenmodes and the value of the associated decay
rate. (c) Decay rates for different values of d.

nanoparticles is determined by the ratio between the
power they absorb Pi and their heat capacities γi. By
expanding n(ω, Tj) around T0, as n(ω, Tj) ≈ n(ω, T0) +
∆Tj∂n(ω, T )/∂T |T=T0

, with ∆Tj = Tj − T0, we can lin-
earize Eq. (1) to obtain the differential equation govern-
ing the evolution of the nanoparticle temperatures,

d

dt
∆T(t) = −H∆T(t). (2)

Here, H = Γ−1F is the product of the inverse of a di-
agonal matrix Γ containing the heat capacities of the
nanoparticles γi and a symmetric matrix F with compo-
nents

Fij = −
∫ ∞
0

dωfij(ω)
∂n(ω, T )

∂T

∣∣∣∣
T=T0

.

As shown in [40], the structure of H ensures its diagonal-
izability. This allows us to write the solution of Eq. (2)

using its eigenvalues λµ and eigenvectors ∆T (µ) as

∆T(t) =

N∑
µ=1

aµe
−λµt∆T (µ), (3)

where the coefficients aµ are obtained from the weighted

inner product between ∆T (µ) and the vector con-
taining the initial temperatures ∆T(0) as aµ =

∑N
i=1 γi∆Ti(0)∆T (µ)

i , with the eigenvectors satisfying∑N
i=1 γi∆T

(µ)
i ∆T (ν)

i = δµν . Therefore, we conclude from
Eq. (3) that the dynamics of the near-field RHT of an
ensemble of nanoparticles can be completely understood
by analyzing its RHT eigenmodes and decay rates given,
respectively, by the eigenvectors and eigenvalues of H.
Importantly, H is positive definite (i.e., λµ > 0), which
ensures that the ensemble thermalizes as t→∞.

This approach assumes that the temperature depen-
dence of the material properties of the nanoparticles can
be neglected. Furthermore, as discussed in [40], its ac-
curacy improves as max(|∆Tj |/T0) and h̄ω0/(kBT0) de-
crease. Here, ω0 represents the characteristic frequency
of the electromagnetic response of the nanoparticles. For
the systems under consideration, the results of the eigen-
mode approach have very good agreement with the non-
linearized full calculation up to max(|∆Tj |/T0) ≈ 1/3, as
shown in [40].

To illustrate the developed framework, we consider a
simple example, although the conclusions we draw are
general to any ensemble of nanoparticles. In particu-
lar, we analyze the two systems depicted in Fig. 1(a),
consisting of N = 4 identical SiC spherical nanoparti-
cles arranged in either a chain or a square (see [40] for
a similar analysis of a system with N = 2197). We ob-
tain the polarizability of the particles from the dipolar
Mie coefficient [44] using the dielectric function ε(ω) =
ε∞
[
1 + (ω2

L − ω2
T)/(ω2

T − ω2 − iωτ−1)
]
, with ε∞ = 6.7,

h̄ωT = 98.3 meV, h̄ωL = 120 meV, and h̄τ−1 = 0.59 meV
[45]. Figure 1(b) analyzes the RHT eigenmodes of the
chain (black) and the square (gray) assuming that the
particles have a radius R = 25 nm and are separated by
d = 4R. The chain has four distinct eigenmodes, while
the larger symmetry of the square results in two of its
modes being degenerate. Since particles with the same
temperature do not exchange heat with one another, ev-
ery ensemble, including the two analyzed here, must al-
ways have an eigenmode with equal amplitude in all par-
ticles. This eigenmode, which we label as µ = 1, rep-
resents a net transfer of heat between the ensemble and
the environment and, as explained below, always has the
slowest decay rate. The orthogonality of the eigenmodes

forces the rest of them to satisfy
∑N
i=1 γi∆T

(µ>1)
i = 0,

which physically means that they represent processes in
which the heat stored in the ensemble remains constant.
Therefore, every eigenmode with µ > 1 describes a near-
field RHT process among the nanoparticles of the en-
semble. Examining the components of these eigenmodes,
we observe that, as µ increases, the length scale over
which the sign of the components alternates, and hence
the near-field RHT occurs, decreases. This is consistent
with the increase of the associated decay rate, whose
value is dominated by terms proportional to (RiRj)

3/d6ij .
In contrast, λ1 describes the net radiation exchange be-
tween the ensemble and the environment, which scales as
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FIG. 2: (a) Thermalization dynamics for an array of N = 49
SiC nanoparticles with R = 25 nm under different initial con-
ditions. The colored curves display the evolution of the tem-
perature of the particle of that color in the inset schematics,
when such particle is initially at ∆T = 49 K and the rest at
∆T = 0 K. The gray curves represent the case where all of the
particles are initially at ∆T = 49/N K. In all cases, solid and
dashed curves correspond to d = 4R and d = 12R. (b) Same
as (a), but for an ensemble of N = 490 SiC nanoparticles
with R = 25 nm, randomly distributed inside a spherical vol-
ume of radius 600 nm with a minimum interparticle distance
dmin = 4R (see schematics).

(Ri/λT )3. Therefore, for near-field RHT (i.e., dij � λT ),
λ1 always has the smallest value among all of the decay
rates, although, as shown in Fig. 1(c), the difference be-
tween λ1 and the rest of the decay rates is reduced by
increasing the distance between the particles.

We know from Eq. (3) that the thermalization of an
ensemble of particles is initially dominated by the eigen-
modes with largest decay rates. However, for sufficiently
long time, this process is controlled by the first eigen-
mode, which, as discussed above, has equal amplitude
in all particles and, consequently, its decay rate is the
smallest. Therefore, in the limit t→∞, the thermaliza-
tion dynamics of a given ensemble depends exclusively
on a1 ∝

∑N
i=1 γi∆Ti(0), or, in other words, the total

heat initially stored in it. This gives rise to interesting
behaviors, as illustrated in Fig 2(a). There, we analyze
the thermalization dynamics of a square array of N = 49
identical SiC particles with R = 25 nm and d = 4R (solid
curves). We consider different initial temperature distri-
butions, all of them corresponding to the same value of
a1. Specifically, the gray curve displays the evolution of
the temperature of the nanoparticles when all of them be-

gin at ∆T = 1 K. On the other hand, the colored curves
represent different scenarios where only one particle, in-
dicated in the schematics using the same color, is initially
hot at ∆T = 49 K. One might anticipate that when all
of the particles begin at ∆T = 1 K, the system would
thermalize most quickly to the environment. However,
as seen in Fig 2(a), this is not the case. Instead, in all
of the scenarios under consideration, all of the particles
approach the equilibrium identically as e−λ1t.

Interestingly, for the scenarios in which only one parti-
cle is initially hot, the thermalization process happens
over two steps: first, all of the particles converge to
∆T = 1 K and, second, the whole array thermalizes to
the environment. This behavior is the result of the large
difference between λ1 and the rest of the decay rates, as
shown in [40]. Therefore, if such difference is decreased
by, for instance, increasing the interparticle distance to
d = 12R, the two-step behavior fades away, as shown by
the dashed curves.

Although, so far, we have only considered ordered dis-
tributions of particles, our conclusions apply to any arbi-
trary ensemble of particles. For example, in Fig 2(b), we
consider an ensemble of N = 490 identical SiC nanopar-
ticles with R = 25 nm randomly arranged within a spher-
ical volume of radius 600 nm, as shown in the inset. As
in panel (a), we compare the thermalization process for
four different initial conditions; in three of them, one
particle, marked in the schematics with the same color
as its corresponding curve, begins at ∆T = 49 K, while,
in the fourth (gray curve), all of the particles begin at
∆T = 0.1 K. As expected, since a1 takes the same value
for all of the cases, they all approach the thermalization
to the environment identically, despite their very differ-
ent initial temperature distributions.

Another interesting scenario to consider is when the
initial distribution of temperatures is orthogonal to the
first RHT eigenmode and hence a1 = 0. Physically, this
means that, although the system is not thermalized, the
total amount of heat initially stored in it is zero. In this
case, the thermalization process is governed entirely by
the eigenmodes describing the near-field RHT between
the particles, since a net transfer of heat to the environ-
ment (described by the first RHT eigenmode) is forbid-
den. To illustrate this, in Fig. 3(a), we study the thermal-
ization dynamics of the array of Fig. 2(a) with d = 4R,
for the initial temperature distributions depicted in the
insets. In both of them, one particle begins at ∆T = 49 K
and another at ∆T = −49 K, while the rest of the array
is at ∆T = 0 K, so a1 = 0. The corresponding results are
displayed using solid and dashed curves, as indicated by
the legend, with red and blue colors describing, respec-
tively, the temperature of the hot and cold particles. As
expected, in both cases, the thermalization of the array
occurs on a time scale ∼ λ−12 ≈ 10−3 s. This is much
faster than the thermalization when all of the nanoparti-
cles begin at ∆T = 1 K (gray curve), even though, in that
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FIG. 3: (a) Thermalization dynamics for a hot (red curves)
and a cold (blue curves) particle in an array of N = 49 SiC
nanoparticles with R = 25 nm and d = 4R. The red and
blue particles are initially at ∆T = 49 K and ∆T = −49 K,
respectively, while the rest are at ∆T = 0 K. We consider
the two cases depicted in the schematics, which are displayed
with solid and dashed curves, respectively. For comparison,
the gray curve represents the thermalization dynamics when
all of the particles are initially at ∆T = 49/N K. (b) Zoom of
(a) around ∆T = 0 K.

case, the particles have to undergo a temperature change
of only 1 K (see panel (b) for a zoom around ∆T = 0 K).
The reason is, again, the large difference between λµ>1

and λ1.

Interestingly, the closer look provided in Fig. 3(b) re-
veals an unituitive behavior: when the hot and cold par-
ticles are next to each other (dashed curves), the temper-
ature of the initially cold particle rises beyond ∆T = 0 K
and subsequently approaches it from above. We attribute
this behavior to the difference in the local environment
of the two nanoparticles; while the hot one lies on the
corner of the array, the cold one is situated in the inte-
rior and is therefore surrounded by more particles. This
creates an imbalance in the cooling and heating rates of
the two particles.

We can use the RHT eigenmode framework to gain
more insight into this oscillatory behavior. To that end,
we analyze a simpler system that exhibits similar oscilla-
tory dynamics but in a more pronounced way. In partic-
ular, we consider the chain of N = 5 SiC nanoparticles
with R = 10 nm and d = 4R, shown in the schemat-
ics of Fig. 4. The particles are initially at ∆T = 50,
50, 25, −50, and −50 K. The different curves in panel
(a) show the evolution of the temperature of the particle
with matching color. As the particles thermalize, their
temperatures oscillate around ∆T = 0 K, with the cen-
ter one (yellow) crossing this value four times through-
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FIG. 4: (a) Thermalization dynamics for a chain with N = 5
SiC nanoparticles arranged as shown in the schematics. We
assume that R = 10 nm, d = 4R, and the nanoparticles are
initially at: ∆T = 50, 50, 25, −50, and −50 K. (b) RHT
eigenmodes of the chain and their associated decay rates.

out the process. The origin of this exotic behavior be-
comes clear by considering the RHT eigenmodes of the
system, which are shown, with their corresponding de-
cay rates, in Fig. 4(b). Specifically, the initial stage of
the thermalization is dominated by the eigenmode with
the largest decay rate, which corresponds to a near-field
RHT process happening almost exclusively between the
center nanoparticle and its nearest neighbor. After that,
the contribution of the next fastest eigenmode drives the
thermalization of both of those particles with their next-
nearest neighbor. This pattern repeats with each suc-
cessive eigenmode, resulting in the observed oscillatory
behavior of ∆T .

In conclusion, we have presented a theoretical frame-
work to characterize the temporal dynamics of the near-
field RHT in arbitrary ensembles of nanoparticles. Our
approach is based on an eigenmode expansion of the
equations that govern the RHT, obtained upon their lin-
earization. The resulting set of eigenmodes completely
characterize the RHT between the constituents of the
ensemble and their environment and therefore allow us
to express, in a closed form, the evolution of the tempera-
tures of the particles for any initial condition. Exploiting
this formalism, we have identified general characteristics
of the dynamics of RHT, which often present themselves
in unintuitive ways. Specifically, we have shown that an
ensemble of nanoparticles beginning with a fixed amount
of stored heat always approaches thermalization identi-
cally, regardless of how that heat is initially distributed.
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Similarly, when the total initial heat stored in an ensem-
ble is zero, the system reaches thermal equilibrium faster
than the case where there is any initially stored heat.
We have also predicted and explained an exotic behav-
ior in which the temperature of nanoparticles oscillates
around the equilibrium value as they thermalize. Our re-
sults provide an insightful and computationally efficient
approach to study the thermalization dynamics mediated
by the near-field RHT, which will facilitate the system-
atic investigation of the impact that novel phenomena,
such as topology [46] and nonreciprocity [47, 48], have
on this process. Furthermore, this framework can be ex-
ploited to analyze the combined transfer of energy and
momentum mediated by the fluctuations of the electro-
magnetic field [39].
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