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We study the performance of classical and quantum machine learning (ML) models in predicting
outcomes of physical experiments. The experiments depend on an input parameter z and involve
execution of a (possibly unknown) quantum process £. Our figure of merit is the number of runs of £
required to achieve a desired prediction performance. We consider classical ML models that perform
a measurement and record the classical outcome after each run of £, and quantum ML models that
can access £ coherently to acquire quantum data; the classical or quantum data is then used to
predict outcomes of future experiments. We prove that for any input distribution D(z), a classical
ML model can provide accurate predictions on average by accessing £ a number of times comparable
to the optimal quantum ML model. In contrast, for achieving accurate prediction on all inputs,
we prove that exponential quantum advantage is possible. For example, to predict expectations of
all Pauli observables in an n-qubit system p, classical ML models require 2¢(m) copies of p, but we
present a quantum ML model using only O(n) copies. Our results clarify where quantum advantage
is possible and highlight the potential for classical ML models to address challenging quantum

problems in physics and chemistry.

I. INTRODUCTION

The widespread applications of machine learning
(ML) to problems of practical interest have fueled in-
terest in machine learning using quantum platforms
[20, 47, [79]. Though many potential applications of
quantum ML have been proposed, so far the prospect
for quantum advantage in solving purely classical
problems remains unclear [I0, 4], [85, [86]. On the
other hand, it seems plausible that quantum ML
can be fruitfully applied to problems faced by quan-
tum scientists, such as characterizing the properties
of quantum systems and predicting the outcomes of
quantum experiments [6l, 28|, 30}, 40} 67, 8], [88].

Here we focus on an important class of learning
problems motivated by quantum mechanics. Namely,
we are interested in predicting functions of the form

f(x) = tr(O E(lz)xl)), (1)

where x is a classical input, £ is an arbitrary (possi-
bly unknown) completely positive and trace preserv-
ing (CPTP) map, and O is a known observable. Equa-
tion (|1) encompasses any physical process that takes a
classical input and produces a real number as output.
The goal is to construct a function h(z) that accu-
rately approximates f(x) after accessing the physical
process £ as few times as possible.

A particularly important special case of setup
is training an ML model to predict what would hap-
pen in physical experiments [67]. Such experiments
might explore, for instance, the outcome of a reaction
in quantum chemistry [96], ground state properties of
a novel molecule or material [I7) 27, [40] 59} [73, [74], 92],
or the behavior of neutral atoms in an analog quan-
tum simulator [19, 25| [63]. In these cases, the input
x subsumes parameters that characterize the process,
e.g., chemicals involved in the reaction, a description
of the molecule, or the intensity of lasers that con-
trol the neutral atoms. The map £ characterizes a
quantum evolution happening in the lab. Depending

on the parameter x, it produces the quantum state
E(|z)z|). Finally, the experimentalist measures a cer-
tain observable O at the end of the experiment. The
goal is to predict the measurement outcome for new
physical experiments, with new values of x that have
not been encountered during the training process.

Motivated by these concrete applications, we want
to understand the power of classical and quantum
ML models in predicting functions of the form given
in Equation . On the one hand, we consider
classical ML: models that can gather classical mea-
surement data {(z;,0;) ZJ\; S, where o; is the outcome
when we perform a POVM measurement on the state
E(|zi)x;]). We denote by N¢ the number of such ex-
periments performed during training in the classical
ML setting. On the other hand, we consider quantum
ML models in which multiple runs of the CPTP map £
can be composed coherently to collect quantum data,
and predictions are produced by a quantum computer
with access to the quantum data. We denote by Ng
the number of times £ is used during training in the
quantum setting. The classical and quantum ML set-
tings are illustrated in Figure

We focus on the question of whether quantum ML
can have a large advantage over classical ML: to
achieve a small prediction error, can the optimal Nq
in the quantum ML setting be much less than the
optimal N¢ in the classical ML setting? For the pur-
pose of this comparison, we disregard the runtime of
the classical or quantum ML models that generate the
predictions; we are only interested in how many times
the process £ must run during the learning phase in
the quantum and classical settings.

Our first main result addresses small average pre-
diction error, i.e. the prediction error |h(z) — f(x)|?
averaged over some specified input distribution D(z).
We rigorously show that, for any £, O, and D, and
for any quantum ML model, one can always design a
classical ML model achieving a similar average pre-
diction error such that N¢ is larger than Ng by at
worst a small polynomial factor. Hence, there is no



Prediction model stored in
classical memory

| Classical processing

Measurement

43
| Classical processing
~ Classical output

Measurement

Classical input
| Classical processing

Classical Setting

Figure 1:

Prediction model stored in
quantum memory

Quantum processing

Entangled

| Quantum processing
Coherent quantum
state output
Entangled
Coherent quantum
| Quantum processing state input

Quantum Setting

Hllustration of classical and quantum machine learning settings: The goal is to learn about an unknown CPTP

map & by performing physical experiments. (Left) In the learning phase of the classical ML setting, a measurement is
performed after each query to &; the classical measurement outcomes collected during the learning phase are consulted

during the prediction phase.

(Right) In the learning phase of the quantum ML setting, multiple queries to £ may

be included in a single coherent quantum circuit, yielding an output state stored in a quantum memory; this stored

quantum state is consulted during the prediction phase.

exponential advantage of quantum ML over classical
ML if the goal is to achieve a small average prediction
error, and if the efficiency is quantified by the number
of times £ is used in the learning process. This state-
ment holds for existing quantum ML models running
on near-term devices [47) 53] [79] and future quantum
ML models yet to be conceived. We note, though,
that while there is no large advantage in query com-
plexity, a substantial quantum advantage in compu-
tational complexity is possible [80].

However, the situation changes if the goal is to
achieve a small worst-case prediction error rather
than a small average prediction error — an exponen-
tial separation between N¢ and Ng becomes possible
if we insist on predicting f(x) = tr(O E(|x)x|)) accu-
rately for every input x. We illustrate this point with
an example: accurately predicting expectation values
of Pauli observables in an unknown n-qubit quantum
state p. This is a crucial subroutine in many quan-
tum computing applications; see e.g. [34) [62] 54l H6-
[58, [61L [74]. We present a quantum ML model that
uses Ng = O(n) copies of p to predict expecta-
tion values of all n-qubit Pauli observables. In con-
trast we prove that any classical ML model requires
Nc¢ = 22 copies of p to achieve the same task even if
the ML model can perform arbitrary adaptive single-
copy POVM measurements.

II. MACHINE LEARNING SETTINGS

We assume that the observable O (with |O| < 1)
is known and the physical experiment £ is an un-
known CPTP map that belongs to a set of CPTP

maps F. Apart from £ € F, the process can be ar-
bitrary — a common assumption in statistical learn-
ing theory [12, [15] [21], 87, [89]. For the sake of con-
creteness, we assume that £ is a CPTP map from
a Hilbert space of n qubits to a Hilbert space of m
qubits. Regarding inputs, we consider bit-strings of
size n: x € {0,1}". This is not a severe restriction,
since floating-point representations of continuous pa-
rameters can always be truncated to a finite number
of digits. We now give precise definitions for classical
and quantum ML settings; see Fig. [1| for an illustra-
tion.

a. Classical (C) ML: The ML model consists of
two phases: learning and prediction. During the
learning phase, a randomized algorithm selects clas-
sical inputs x; and we perform a (quantum) exper-
iment that results in an outcome o; from perform-
ing a POVM measurement on &(|z;)Xz;]). A total
of N¢ experiments give rise to the classical training
data {(z;,0;)}Y. After obtaining this training data,
the ML model executes a randomized algorithm A to
learn a prediction model

sc = A({(z1,01),... (Tnc,0nG)}) ()
where sc is stored in the classical memory. In the pre-
diction phase, a sequence of new inputs Zi,Zg,... €

{0,1}" is provided. The ML model will use sc to eval-
uate predictions h¢(Z1), hc(Z2), . .. that approximate
f(Z1), f(Z2), ... up to small errors.

b. Restricted classical ML: We will also consider
a restricted version of the classical setting. Rather
than performing arbitrary POVM measurements, we
restrict the ML model to measure the target observ-
able O on the output state & |z;)z;| to obtain the



measurement outcome o;. In this case, we always have
0; € R and E[o;] = tr(O E(|z; Xx:])).

¢.  Quantum (Q) ML: During the learning phase,
the model starts with an initial state pg in a Hilbert
space of arbitrarily high dimension. Subsequently, the
quantum ML model accesses the unknown CPTP map
& a total of Nq times. These queries are interleaved
with quantum data processing steps:

pe = Cng (EET)Cxg-1 - CL(EET) (o), (3)

where each C; is an arbitrary but known CPTP map,
and we write £ ®Z to emphasize that £ acts on an
n-qubit subsystem of a larger quantum system. The
final state pg, encoding the prediction model learned
from the queries to the unknown CPTP map &, is
stored in a quantum memory. In the prediction phase,
a sequence of new inputs Z1,Za,... € {0,1}" is pro-
vided. A quantum computer with access to the stored
quantum state pg executes a computation to pro-
duce prediction values hq(Z1),hq(Z2),... that ap-
proximate f(Z1), f(Z2),... up to small errors?.

The quantum ML setting is strictly more powerful
than the classical ML setting. During the prediction
phase, classical ML models are restricted to process-
ing classical data, albeit data obtained by measuring
a quantum system during the learning phase. In con-
trast, quantum ML models can work directly with the
quantum data and perform quantum data processing.
A quantum ML model can have an exponential advan-
tage relative to classical ML models for some tasks,
as we demonstrate in Sec. [Vl

IIT. AVERAGE-CASE PREDICTION ERROR

For a prediction model h(z), we consider the
average-case prediction error

Y. D@)lh(z) — tr(OE(|x)a))?,  (4)

ze{0,1}m

with respect to a fixed distribution D over inputs.
This could, for instance, be the uniform distribution.

Although learning from quantum data is strictly
more powerful than learning from classical data, there
are fundamental limitations. The following rigorous
statement limits the potential for quantum advantage.

Theorem 1. Fiz an n-bit probability distribution D,
an m-qubit observable O (||O] < 1) and a set F of
CPTP maps with n input qubits and m output qubits.
Suppose there is a quantum ML model which accesses
the map € € F Nq times, producing with high proba-
bility a function hq(x) that achieves

Y D()|hq(z) — tw(O(|ja)a)* < e (5)

ze{0,1}7

1 Due to non-commutativity of quantum measurements, the
ordering of new inputs matters. For instance, the two lists
T1,%2 and Zo2,Z1 can lead to different outcome predictions
hq(&;). Our main results do not depend on this subtletey —
they are valid, irrespective of prediction input ordering.

Then there is an ML model in the restricted classi-
cal setting which accesses € No = O(mNg/e) times
and produces with high probability a function hc that
achieves

Y D) lhe(z) - tr(OE (|z)xl)[* = Oe). (6)

z€{0,1}™

Proof sketch. The proof consists of two parts. First,
we cover the entire set of CPTP maps F with a maxi-
mal packing net, i.e. the largest subset S = {€ s}‘sszll C

F such that the functions fg¢ (2) = tr(O Es(|zXx|))
obey ZJ;E{O,I}” D(z) |fgs (z) — fe., (9:)|2 > 4e¢ when-

ever s # s'. We then set up a communication pro-
tocol as follows. Alice chooses an element s of the
packing net uniformly at random, records her choice
s, and then applies £; Ng times to prepare a quan-
tum state pg, as in Eq. (3). Alice’s random ensemble
of quantum states is thus given by

pe. with probability ps = ﬁ (7

for s = 1,...,|S]. Alice then sends the randomly
sampled quantum state pg, to Bob, hoping that Bob
can decode the state pg, to recover her chosen mes-
sage s. Using the quantum ML model, Bob can pro-
duce the function hg <(x). Because by assumption
the function hq ¢(x) achieves a small average-case pre-
diction error with high probability, and because the
packing net has been constructed so that the func-
tions {fe.} are sufficiently distinguishable, Bob can
determine s successfully with high probability. Be-
cause Alice chose from among |S| possible messages,
the mutual information of the chosen message s and
Bob’s measurement outcome must be at least of or-
der log |S| bits. According to Holevo’s theorem, the
Holevo x quantity of Alice’s ensemble Eq. upper
bounds this mutual information, and therefore must
also be x = Q(log |S)|. Furthermore, we can analyze
how x depends on Ng, finding that each additional
application of £4 can increase y by at most O(m). We
conclude that x = O(mNgq), yielding the lower bound
Nq = Q(log(|S])/m). The lower bound applies to any
quantum ML model, where the size |S| of the pack-
ing net depends on the average-case prediction error
€. This completes the first part of the proof.

In the second part, we explicitly construct an ML
model in the restricted classical setting that achieves
a small average-case prediction error using a modest
number of experiments. In this ML model, an input
x; is selected by sampling from the probability distri-
bution D, and an experiment is performed in which
the observable O is measured in the output quantum
state £(|x;)x;|), obtaining measurement outcome o;
which has expectation value tr(O E(|z;)Xz;])). A to-
tal of N¢ such experiments are conducted. Then, the
ML model minimizes the least-squares error to find
the best fit within the aforementioned maximal pack-
ing net S:

1 e
hc = argmin — x;) — 0|2, 8
C %68 No ;U( z) z| ( )

Because the measurement outcome o; fluctuates
about the expectation value of O, it may be impossi-



ble to achieve zero training error. Yet it is still possi-
ble for hc to achieve a small average-case prediction
error, potentially even smaller than the training er-
ror. We use properties of maximal packing nets and
of quantum fluctuations of measurement outcomes to
perform a tight statistical analysis of the average-
case prediction error, finding that with high probabil-
ity Yseqoayn D) lhe(x) — tr(OE(|z)al))* = O(e),
provided that Ng is of order log(|S])/e.

Finally, we combine the two parts to conclude N¢ =
O(mNq/e). The full proof is in Appendix ?7. O

Theorem [I] shows that all problems that are ap-
proximately learnable by a quantum ML model are
also approximately learnable by some restricted clas-
sical ML model which executes the quantum pro-
cess £ a comparable number of times. This ap-
plies in particular, to predicting outputs of quantum-
mechanical processes. The relation N¢ = O(mNgq/e)
is tight. We give an example in Appendix 7?7 with
NC = Q(mNQ/e).

For the task of learning classical Boolean circuits,
fundamental limits on quantum advantage have been
established in previous work [TTHI3] [BT], [80, [94]. The-
orem [T] generalizes these existing results to the task of
learning outcomes of quantum processes.

IV. WORST-CASE PREDICTION ERROR

Rather than achieving a small average prediction
error, one may be interested in obtaining a prediction
model that is accurate for all inputs x € {0,1}". For
a prediction model h(z), we consider the worst-case
prediction error to be

[Shax [h(z) = tr(O E(Ju)=)I*. 9)

Under such a stricter performance requirement, expo-
nential quantum advantage becomes possible.

We highlight this potential by means of an illustra-
tive and practically relevant example: predicting ex-
pectation values of Pauli operators in an unknown n-
qubit quantum state p. This is a central task for many
quantum computing applications [34, 52, (4, H6-
58, [61, [74]. To formulate this problem in our frame-
work, suppose the 2n-bit input = specifies one of the
4™ p-qubit Pauli operators P, € {I, XY, Z}®" and
suppose that £,(|x)«x|) prepares the unknown state p
and maps P, to the fixed observable O, which is then
measured; hence

f@) = tr(O &, (|x)z])) = tr(Pup). (10)

In this setting, according to Theorem [T} there is no
large quantum advantage if our goal is to estimate the
Pauli operator expectation values with a small aver-
age prediction error. However, an exponential quan-
tum advantage is possible if we insist on accurately
predicting every one of the 4™ Pauli observables.
First we show there is an efficient quantum ML
model that achieves a small prediction error. De-
tails are in Appendix ?7?; here we just sketch the
main ideas. The procedure for predicting tr(P,p)

has two stages. The goal of the first stage is to pre-
dict the absolute value |tr(P,p)| for each x, and the
goal of the second stage is to determine the sign of
tr(Pyp). The key idea used in the first stage is that,
although two different Pauli operators P, and P, may
either commute or anticommute, the tensor products
P, ® P, and P, ® P, are mutually commuting for
all z and y. Therefore, although it is not possible
to measure anticommuting Pauli operators simulta-
neously using a single copy of the state p, it is possi-
ble to measure P, ® P, simultaneously for all x using
two copies of p. Indeed, all 4™ expectation values
tr((Py ® Py)(p®p)) = tr(Pyp)? can be determined by
measuring pairs of qubits in the Bell basis, which is
highly efficient. This completes the first stage.

If | tr(P,p)| is found to be small in the first stage,
we may predict h(z) = 0 and be assured that the pre-
diction error is small. Therefore, in the second stage,
we need only determine the sign if | tr( P, p)| was found
to be reasonably large in the first stage. In that case
we can perform a coherent measurement across sev-
eral copies of p which performs a majority vote and
yields the correct value of the sign with high success
probability. Because the measurement is strongly bi-
ased in favor of one of the two possible outcomes, it
introduces only a very “gentle” disturbance of the pre-
measurement state. Therefore, by performing many
such measurements in succession on the same quan-
tum memory register, we can determine the sign of
tr(Pyp) for many different values of z. The second
stage can also be more amenable to near-term imple-
mentation using a heuristic that groups commuting
observables [56, [57]; see Appendix ?? for further dis-
cussion. Each of the two stages requires only a small
number of copies of p; a careful analysis yields the
following theorem.

Theorem 2. The quantum ML model only needs
Nq = O(log(M/68)/e*) copies of p to predict expec-
tation values of any M Pauli observables to error €
with probability at least 1 — 6.

More details regarding the quantum ML model, as
well as a rigorous proof, are provided in Appendix 77.
The sample complexity stated in Theorem [2improves
upon previously known shadow tomography protocols
[4, B, 26], [54] for the special case of predicting Pauli
observables; see Appendix ?7. Because each access to
&, allows us to obtain one copy of p, we only need
Nq = O(n) to predict expectation values of all 4™
Pauli observables up to a constant error.

For classical ML models, we prove the following fun-
damental lower bound; see Appendix ?7.

Theorem 3. Any classical ML must use N¢ > 22
copies of p to predict expectation values of all Pauli
observables up to a small error with a constant success
probability.

This theorem holds even when the POVM measure-
ments performed by the classical ML model could de-
pend on the previous POVM measurement outcomes
adaptively. When combined with Theorem [2 Theo-
rem [3| establishes an exponential gap separating clas-
sical ML models from fully quantum ML models. Ta-
ble 2] provides a summary of the upper and lower
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bounds on the sample complexity for predicting ex-
pectation values of Pauli observables.

V. NUMERICAL EXPERIMENTS

We support our theoretical findings with numeri-
cal experiments, focusing on the task of predicting
the expectation values of all 4™ Pauli observables in
an unknown n-qubit quantum state p, with a small
worst-case prediction error. In this case, the func-
tion is f(z) = tr(O&,(|x)x|)) = tr(Pyp), where
x € {I,X,Y,Z}" indexes the Pauli observables, and
&, prepares the unknown state p then maps P, to the
fixed observable O. This is the task we considered in
Section [[V] Note that average-case prediction of Pauli
observables is a much easier task, because most of the
4™ expectation values are exponentially small in n.

We consider two classes of underlying states p: (i)
Mized states: p = (I + P)/2", where P is a ten-
sor product of n Pauli operators. States in this class
have rank 2"~ 1. (ii) Product states: p = @, |si)si,
where each |s;) is one the six possible single-qubit sta-
bilizer states. We consider stabilizer states to ensure
that classical simulation of the quantum ML model is
tractable for reasonably large system size.

The numerical experiment in Figure [3] implements
the best-known ML procedures. We can clearly see
that there is an exponential separation between the
number of copies of the state p required for classical
and quantum ML to predict expectation values when
p is in the class of mixed states. However, for the
class of product states, the separation is much less
pronounced. Restricted classical ML can only obtain
outcomes o; € {£1} with E[o;] = tr(FPy,p). Hence
each copy of p provides at most one bit of informa-
tion, and therefore O(n) copies are needed to pre-
dict expectation values of all 4™ Pauli observables. In
contrast, standard classical ML can perform arbitrary
POVM measurements on the state p, so each copy can
provide up to n bits of information. The separation
between classical ML and quantum ML is marginal
for product states.

VI. CONCLUSION AND OUTLOOK

We have studied the task of learning functions of
the form Equation , using as a figure of merit the
number of runs of £, Our main result Theorem [
shows that, when the objective is achieving a spec-
ified average prediction error, a classical ML model
can perform as well as a quantum ML model, using
a comparable number of runs of £. This result es-
tablishes a fundamental limit on quantum advantage
in machine learning that holds for any quantum ML
model [47, 53], [79].

From a different perspective, Theorem[[]means that
the classical ML setting, in which a measurement is
performed after each query to £, can be surprisingly
effective. The quantum ML setting, in which multiple
queries to &€ can be included in a single coherent quan-
tum circuit, is far more challenging and may be infea-
sible until far in the future. Therefore finding that
classical and quantum ML have comparable power
(for average-case prediction) boosts our hopes that
the combination of classical ML and near-term quan-
tum algorithms [47] [52], 53], [76] [79] may fruitfully ad-
dress challenging quantum problems in physics, chem-
istry, and materials science.

On the other hand, Theorem [2] and [3| rigorously es-
tablish that quantum ML can have an exponential ad-
vantage over classical ML for certain problems where
the objective is achieving a specified worst-case pre-
diction error. This exponential advantage of quan-
tum ML over classical ML may be viewed as an ex-
ponential separation between coherent measurements
(in which a measurement apparatus interacts coher-
ently multiple times with a measured system, storing
quantum data which is then processed by a quantum
computer) and incoherent measurements (in which a
POVM measurement is performed and the outcome
recorded after each interaction between system and
apparatus, and the classical measurement outcomes
are then processed by a classical computer). Such a
separation has been challenging to establish because
incoherent measurements are difficult to analyze in
the adaptive setting, where each measurement per-
formed may depend on the outcomes of all previous
measurements. Our proof technique overcomes this



challenge, enabling us to identify tasks which allow
substantial quantum advantage. An important future
direction will be identifying further learning problems
which allow substantial quantum advantage, point-
ing toward potential practical applications of quan-
tum technology.
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