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Motility-induced phase separation (MIPS), the phenomenon in which purely repulsive active particles un-
dergo a liquid-gas phase separation, is among the simplest and most widely studied examples of a nonequi-
librium phase transition. Here, we show that states of MIPS coexistence are in fact only metastable for three
dimensional active Brownian particles over a very broad range of conditions, decaying at long times through an
ordering transition we call active crystallization. At an activity just above the MIPS critical point, the liquid-gas
binodal is superseded by the crystal-fluid coexistence curve, with solid, liquid, and gas all coexisting at the triple
point where the two curves intersect. Nucleating an active crystal from a disordered fluid, however, requires a
rare fluctuation that exhibits the nearly close-packed density of the solid phase. The corresponding barrier to
crystallization is surmountable on a feasible time scale only at high activity, and only at fluid densities near
maximal packing. The glassiness expected for such dense liquids at equilibrium is strongly mitigated by active
forces, so that the lifetime of liquid-gas coexistence declines steadily with increasing activity, manifesting in
simulations as a facile spontaneous crystallization at extremely high activity.

Introduction.– The equilibrium crystallization of hard
spheres [1] is the canonical example of entropically driven
ordering of particle configurations: For a range of volume
fractions φ, a fluid of hard spheres in three dimensions (3D)
undergoes a symmetry breaking transition into coexisting dis-
ordered (fluid) and ordered (solid) phases [2–11]. Boltzmann
statistics provide an unambiguous physical interpretation of
the driving force for this transition: the free volume generated
by ordering permits a more diverse set of particle configura-
tions, whose entropy is the sole contribution to the free energy
of hard spheres. This order-disorder transition is entirely geo-
metric in origin and is controlled solely by φ.

The influence of nonconservative dynamics on the melting
transition of hard spheres is an open and important subject
in nonequilibrium statistical mechanics: how do driven dy-
namics compete with entropic geometric forces to create or
destroy order? To this end, active Brownian particles (ABPs)
have emerged as a paradigmatic minimal model of driven sys-
tems and have aided in advancing our general understanding
of nonequilibrium phase behavior [12–14]. In the athermal
limit, the ABP model has only two distinct control parame-
ters, both geometric in character. Dimensional analysis re-
veals one as φ and the other as the ratio of the persistence
(or “run”) length of a free particle’s trajectory `0 to the parti-
cle size σ. This run length provides a convenient and direct
measure of the time-irreversible motion of active particles, al-
lowing for a continuous departure from reversible dynamics
(`0/σ → 0) [15–17] where equilibrium hard-sphere physics
should be precisely recovered.

Further motivating the study of active crystallization is the
knowledge that for finite run lengths, ABPs exhibit a distinct
geometric transition that has garnered considerable interest:
the so-called motility-induced phase separation (MIPS) [12,
18–20]. This uniquely nonequilibrium phenomenon requires

no interparticle attraction, yet appears to be a genuine liquid-
gas transition, with no evidence of rotational symmetry break-
ing between the coexisting phases in 3D [21–25]. The appar-
ent and conspicuous absence of an ordered phase for activities
in the vicinity of the MIPS phase boundary raises the intrigu-
ing question: does the crystallization transition disappear as
the system departs from equilibrium?

In this Letter we aim to clarify the relationship between
MIPS and crystallization out of equilibrium. To this end, we
present results of extensive simulations of active Brownian
hard spheres, conducted over a broad range of conditions. The
majority of computational work on ABP ordering transitions
has focused on repulsive disks in 2D [26–32], where the re-
lationship between MIPS and crystallization is obscured by
complications that long muddied the nature of freezing even
for hard disks at equilibrium [33, 34]. We instead construct
phase diagrams for active Brownian hard spheres in 3D, where
the order-disorder transition is straightforward in the equilib-
rium limit. These results reveal that the crystallization coex-
istence region in fact expands with increasing activity, engulf-
ing the MIPS phase boundary everywhere except for a nar-
row range of control parameters. Slightly above the critical
activity, the solid-fluid phase boundary intersects the liquid-
gas binodal, forming an active triple point where solid, liquid,
and gas may coexist. The proximity of the triple and critical
points renders nearly the entirety of the MIPS phase bound-
ary metastable, with solid-fluid coexistence being the globally
stable configuration. The frequent observation of liquid-gas
coexistence (and its apparent stability) is due to the remark-
ably narrow region of the phase diagram where nucleation of
an active crystal from a disordered fluid can be readily ob-
served. By locating these regions, we are able to identify
the rate-limiting features of the active crystal nucleation land-
scape.
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Model System.– We consider the simplest active system that
captures the equilibrium crystallization limit for vanishing ac-
tivity: 3D active Brownian hard spheres. Each of the N par-
ticles experiences three forces: a drag force −ζẋ proportional
to the particle velocity ẋ; a conservative (pairwise) interpar-
ticle force FC[xN ], where xN is the set of all particle posi-
tions; and an active self-propelling force FA = ζU0q. The
particle orientations q independently obey diffusive 3D ro-
tary dynamics q̇ = Ω × q where the stochastic angular veloc-
ity has mean 0 and variance ⟨Ω(t)Ω(0)⟩ = 2/τRδ(t)I and
τR is the characteristic reorientation time. We take the inter-
particle force FC[xN ; ε, σ] to result from a Weeks-Chandler-
Anderson (WCA) potential [35] (characterized by a Lennard-
Jones diameter σ and energy ε) and take ζU0, σ, and τR to be
the characteristic units of force, length and time, respectively.
The overdamped Langevin equation for the dimensionless ve-
locity ẋ naturally follows as:

ẋ = `0
σ

(q +F
C[xN ;S]) , (1)

where `0 = U0τR. The dimensionless force F
C

depends on
the reduced positions xN and is fully characterized by the
“stiffness” parameter S ≡ ε/(ζU0σ).

Despite our use of a continuous potential, the hard-sphere
limit is very closely approached in these simulations. Lacking
translational Brownian motion (which attenuates the influence
of activity on the phase behavior [36]), and inertia (which also
profoundly alters active phase behavior [37]), these particles
strictly exclude volume with a diameter d set by S. Contin-
uous repulsions act only at distances between d and 21/6σ, a
range that quickly becomes negligible as S increases. We use
a stiffness S = 50 for which d/(21/6σ) = 0.9997, effectively
achieving hard-sphere statistics. Holding S to remain in this
hard-sphere limit, the system state is independent of the ac-
tive force magnitude and is fully described by two geometric
parameters: the volume fraction φ = Nπ(21/6σ)3/6V and the
dimensionless intrinsic run length `0/σ.

All simulations were conducted with a minimum of 54,000
particles using HOOMD-blue [38, 39].

Phase Diagram.– The phase diagram of 3D active hard
spheres is presented in Fig. 1. Initially homogeneous [39]
systems prepared within the liquid-gas binodal are often ob-
served to spontaneously phase separate, the widely reported
MIPS. For all activities within the 3D MIPS phase bound-
ary, the coexisting phases only differ in density, appearing to
share precisely the same symmetry, shown in Fig. 1(b). More
quantitatively, Figs. 1(c) and (d) show the probability distribu-
tion of local density to be bimodal, while q12 (the per-particle
Steinhardt-Nelson-Ronchetti order parameter [40] measuring
twelve-fold rotational symmetry), is Gaussian distributed to a
good approximation.

The critical point associated with this liquid-gas transition
is found by assuming critical scaling of the order parame-
ter, which we take to be the difference between liquid and
gas phase densities φliq − φgas. Defining the reduced activ-
ity as τ = `0−`c

`c
, the order parameter is anticipated to scale

FIG. 1. (a) Phase diagram of 3D active hard spheres, with the critical
region magnified in the inset. For (`0/σ = 50, φ = 0.5), (b) rep-
resentative configurations of liquid-gas and solid-fluid coexistence.
Corresponding probability distributions for (c) local volume fraction
(using particle Voronoi volumes), and (d) q12 (which takes a value of
q12 ≈ 0.6 for perfect FCC order and q12 ≈ 0.3 for a disordered fluid).
(e) Global symmetry parameter Q12 as a function of time for both
coexistence scenarios.

as φliq − φgas ∝ τβ (τ > 0). By fitting the coexisting den-
sities nearest to the critical point [39], we extract a critical
activity `c/σ ≈ 18.8 and critical exponent β ≈ 0.33. The lat-
ter value agrees suggestively (and perhaps fortuitously) with
the 3D Ising universality class. A full critical scaling anal-
ysis [41–45] (such as those recently performed on 2D active
systems [46–50]) will be required to confirm the robustness
of this apparent agreement. The critical density is found to be
φc ≈ 0.483.

The order-disorder transition, by contrast, is notably ab-
sent from the literature on 3D ABPs, a direct consequence
of formidable nucleation barriers that will be described below
[see Fig. 2]. To access this transition, we devise a simula-
tion protocol [39] that biases the system to form FCC crys-
tals, later established as the stable ordered phase for this sys-
tem. In a nutshell, we initialize the particles in a perfect FCC
configuration at φ = 0.7 and perform a uniaxial extension to
sweep through φ and identify regions of solid-fluid coexis-
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FIG. 2. Crystal nucleation from metastable active fluids with `0/σ = 50. (a) Time evolution of Q12 and accompanying snapshots (right). (b)
Dynamic structure factor F (k, t) evaluated at the wavevector k = ∣k∣ = k∗ corresponding to the first peak of F (k,0) [39]. Probe volume
occupation probability Pv(N) plotted as a function ofN in (c) for φ = 0.62 at various probe diametersDp, and in (d) forDp = 6.0σ at various
densities. Lines are Gaussian distributions with the same mean and variance as simulation data.

tence. Long simulations [39] are run to verify the stability of
the observed coexistence. The resulting coexisting solid and
fluid densities are reported in our phase diagram [Fig. 1(a)]
with a typical configuration shown in Fig. 1(b).

Importantly, solid-fluid coexistence was observed to be a
stable configuration for a range of φ at all values of activity –
including those in which MIPS is observed. At small activi-
ties, where particle motion is nearly reversible [39], systems
approach the well-established hard-sphere coexistence densi-
ties [2, 9] of φfluid = 0.494 and φsolid = 0.545. At `0/σ = 0.05,
for instance, we find φfluid = 0.52 and φsolid = 0.58. With
increasing activity, we observe a rapid departure from this
reversible limit; coexisting densities of both phases increase
markedly. The solid packing fraction quickly approaches the
close-packed volume fraction φcp ≈ 0.74 and remains near
this value for all `0/σ ≥ 5.

In contrast to the solid density, the activity dependence of
the fluid is nonmonotonic and defines some of the central
features of the phase diagram. As the activity is increased
from zero, the fluid density rapidly increases to a volume
fraction of ≈ 0.59 (at `0/σ = 5), then decreases upon reach-
ing the critical activity for MIPS. The fluid density continues
to decrease with activity until intersecting the MIPS binodal
(`0/σ ≈ 21.25) slightly above the critical point. The inter-
section of these coexistence curves results in an active triple
point [51] where gas, liquid, and solid phases can coexist at
the densities marked in Fig. 1(a).

Above the triple activity, the fluid that coexists with the
solid phase has a density that is strictly less than the MIPS
gas-phase density. As a result, above the three-phase coexis-
tence line, the liquid-gas binodal is entirely engulfed by the
solid-fluid coexistence boundary [see Fig. 1(a)]. In an equi-
librium context, encapsulation of the liquid-gas binodal by the
crystal-fluid phase boundary is a familiar and generic feature

of simple substances below their triple temperature [52–54].
Equilibrium requirements that free energy be convex and ex-
tensive further guarantee that the phase boundary with more
extreme densities (typically crystal-fluid) corresponds to the
more stable coexistence. Leveraging the tools of large de-
viation theory [55], a similar conclusion can be drawn even
for systems out of equilibrium [39]. For our ABPs at ac-
tivities above `0/σ ≈ 21.25, states of liquid-gas coexistence
should therefore crystallize irreversibly. We observe that sys-
tems above the triple point and within the MIPS binodal can
nevertheless persist for very long times in a state of liquid-
gas coexistence. We now aim to verify that these states are
globally unstable.

Homogeneous Nucleation and Stability.– Despite recent
progress in the development of importance sampling tech-
niques for nonequilibrium systems [56–65], the ability to
comprehensively survey the phase behavior of many-particle
active systems [66–69] remains limited. In the absence of
these tools, we make an appeal to two-state rate theory to
identify the relative stability of the two coexistence scenarios.
Observing one form of coexistence (e.g., liquid-gas) sponta-
neously transition to the other (e.g., solid-fluid), and failing
to observe the reverse transition, would provide compelling
evidence for the global stability of the latter coexistence sce-
nario (and, naturally, the metastability of the former). How-
ever, long simulations at many such state points reveal no tran-
sitions. For example, Fig. 1(e) shows the time evolution of
the global order parameter Q12 = ⟨q12⟩ (the particle-averaged
q12) at (`0/σ = 50, φ = 0.5). This points to the looming
larger question: can we observe the unbiased nucleation of
an active crystal from a disordered fluid? We therefore turn to
understanding the general forces that sculpt the crystal nucle-
ation landscape and their dependencies on the state parameters
(`0/σ, φ).
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Figure 2 surveys the crystal nucleation landscape at dense
packing fractions outside of the liquid-gas binodal (φ > 0.61
for `0/σ = 50). In this region of the phase diagram, solid-fluid
coexistence is the unambiguously stable system state. We
prepare these metastable high-density fluids by the isotropic
compression of less-dense fluids [39]. A disordered fluid at
φ = 0.635 is observed to remain a liquid on all accessible
time scales. Fluids at φ ≥ 0.64, by contrast, readily nucle-
ate a tightly packed active crystal (FCC), which grows into a
single ordered domain that coexists with a fluid (gas) bubble
[see Fig. 2(a)]. The crystal symmetry and coexisting densities
are consistent with those obtained from our crystal seeding
procedure. Crystal nucleation remains facile up to φ = 0.65
(near maximal packing [70]), the limiting density at which a
hard-sphere fluid can still relax.

The remarkably narrow window of density (0.64 ≤ φ ≤
0.65) where active crystal growth can be observed makes ev-
ident why the 3D active order-disorder transition has, to our
knowledge, previously eluded observation. That this nucle-
ation window occurs near maximal packing can be understood
from general ideas of classical nucleation theory, which has
successfully described the nucleation of 2D active liquids [71–
73]. In this framework, the characteristic crystal nucleation
rate should be governed by the product of the inverse fluid
relaxation time τ−1

fluid and the probability PCN of forming the
critical nucleus in the course of spontaneous fluctuations [74].

High densities are generally considered inhospitable for nu-
cleation, since fluids typically vitrify near maximal packing,
i.e., τfluid diverges. Highly active fluids, however, exhibit
no sign of glassy dynamics up to a density of (at least [75])
φ = 0.635, as evidenced by the self component of the dynamic
structure factor [Fig. 2(b)]. Significant arrest only occurs upon
reaching the geometrically-frustrated maximal random limit,
consistent with the emerging active glass literature [76–82].

In the absence of vitrification, dense liquids can be favor-
able for nucleation, since they promote fluctuations that fea-
ture solid-like local density. We quantify this enhancement of
PCN by calculating the probability Pv(N) to observeN parti-
cles in a spherical probe volume v of diameter Dp. Much like
hard spheres at equilibrium [83], the distribution is Gaussian
for many standard deviations, even for large densities and rel-
atively small probe diameters [see Fig. 2(c)]. For v compara-
ble in size to a plausible critical nucleus (Dp = 6σ), solid-like
local densities are highly atypical at `0/σ = 50 for fluids at all
densities we have studied, shown in Fig. 2(d). For φ ≤ 0.635
such extreme local density fluctuations are so unlikely as to
be unobserved in our long simulations. Near φ = 0.65, they
become discernible (while still rare), consistent with our ob-
servations of successful crystal nucleation.

Discussion and Conclusions.– The near close-packed den-
sity of active crystals severely restricts the region of the phase
diagram where crystallization can feasibly be observed in sim-
ulations, in stark contrast to the broad range of conditions in
which MIPS is readily observable (via nucleation or spinodal
decomposition). Sufficiently close-packed local fluctuations
occur with nonnegligible probability only in fluids that are

FIG. 3. Spontaneous transition from liquid-gas to solid-fluid coex-
istence (`0/σ = 500, φ = 0.5). Time evolution of Q12, indicating
four frames whose structures are (partially) rendered alongside the
distributions of q12 for each configuration.

almost maximally packed. Direct observation of transitions
from liquid to solid, such as in Fig. 3, is thus feasible at very
high activity, where the liquid phase is extremely dense. At
low activities, the MIPS liquid-phase density is simply too
low to nucleate an active crystal on accessible time scales,
as exemplified by the long trajectory of Fig. 1(e) with liquid
density φ ≈ 0.61. In this low-activity case we lack the direct
evidence of spontaneous transitions to judge the metastabil-
ity of liquid-gas coexistence. Based on theoretical considera-
tions [39], however, the densities of coexisting phases we ob-
serve in simulations constitute strong indirect evidence to this
effect. We therefore conclude that MIPS is in fact metastable
above the triple point activity. Consequently, liquid-gas co-
existence is only the globally stable state in the narrow inter-
val [84] between the critical and triple points [see Fig. 1(a)
inset and supplementary videos [39]].

The phase diagram presented in this work bears a strik-
ing resemblance to the phase diagram of traditional equilib-
rium molecular or colloidal systems with short-ranged at-
tractions [52–54]. However, attempting to directly equate
activity to an “effective attraction” has proven to be diffi-
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cult [25, 85, 86]. We therefore anticipate that 3D active hard
spheres will serve as an important system to generalize the
equilibrium arguments used in the construction of solid-fluid
phase boundaries (and triple points) to nonequilibrium sys-
tems. Moreover, additional examination of active phase be-
havior in 3D may prove insightful for further understanding
the role of dimensionality in the rich phase behavior (such as
“bubbly liquids” [31, 87, 88]) reported in 2D. Finally, while
active freezing has primarily been experimentally interrogated
in 2D [89–91], we hope that our study will aid in guiding on-
going efforts [92] to realize 3D active crystals.
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