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The spontaneous order of electric and magnetic dipoles in ferroelectrics and ferromagnets even
at high temperatures is both fascinating and useful. Transport of magnetism in the form of spin
currents is vigorously studied in spintronics, but the polarization current of the ferroelectric order
has escaped attention. We therefore present a time-dependent diffusion theory for heat and polar-
ization transport in a planar ferroelectric capacitor with parameters derived from a one-dimensional
phonon model. We predict steady-state Seebeck and transient Peltier effects that await experimental
discovery.

Ferromagnetism and ferroelectricity describe the order
of magnetic and electric dipoles that spontaneously forms
often far above room temperature and have much in com-
mon [1]. The robustness of the order and the associated
stray magnetic and electric fields give rise to numerous
technological applications that affect our daily life. The
physics appears to be very different, however. The Am-
perian electric (Gilbertian magnetic) dipoles break (con-
serve) inversion symmetry, but conserve (break) time-
reversal symmetry. Furthermore, the static electric dipo-
lar interaction is much larger than the magnetic one. Ac-
cording to the Bohr-van Leeuwen theorem, magnetism
is a quantum effect, while ferroelectricity can exist in
the classical realm. Nevertheless, the phenomenology of
these material classes displays close analogies. The dipo-
lar order is staggered in antiferromagnets as well as anti-
ferroelectrics. The electrocaloric (magnetocaloric) effect
is based on the dependence of the entropy of the elec-
tric (magnetic) dipolar ensembles as a function of ap-
plied electric (magnetic) field and temperature [2]. Both
magneto- as well as electrocaloric heat pumps appear to
be close to the market.

“Spintronics” addresses transport in magnetic struc-
tures and devices [3]. Not only magnetic metals, but
also electrically insulating magnets are important spin-
tronic materials because spin waves carry angular mo-
mentum or spin currents that can be excited and de-
tected by heavy metal contacts [4]. Spin caloritronics
is the study of coupled spin, heat and charge currents,
covering the spin Seebeck and spin Peltier effects [5, 6].
Surprisingly, only very few studies address transport in
ferroelectrics (FEs). A thermopolarization [7–9] and di-
electric Peltier effect [10, 11] have been reported. How-
ever, the theory underlying these studies inappropriately
mixes electrocaloric/pyroelectric effects, i.e. adiabatic
transients between equilibrium states, with transport or
caloritronic, i.e., genuine non-equilibrium phenomena.

In the Letter, we take the first steps in the equiva-
lent to spintronics in ferroelectrics by reporting a theory

of polarization and heat currents in electrically insulat-
ing ordered FEs in response to electric field and tem-
perature gradients. The predicted polarization Seebeck
and Peltier effects turn out to be observable already for
the most basic, yet experimentally relevant device, i.e.
a slab of an FE between electric contacts (see Fig. 1),
for which we solve the time-dependent diffusion equation
for the polarization accumulation in the FE with bound-
ary conditions to metallic reservoirs. We estimate the
parameters by solving the Boltzmann equation for a one-
dimensional chain of elastically coupled dipoles, which
is a microscopic model for the FE excitations at tem-
peratures sufficiently below the phase transition. The
analogies and differences with magnon transport are il-
luminating [12, 13].
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FIG. 1. (Left) Planar capacitor of an ordered ferroelectric
with thickness L between metal contacts connected by a volt-
meter. (Right) An applied temperature bias generates a
steady-state polarization accumulation (or chemical poten-
tial) distribution µ. The green line illustrates the case of two
opaque interfaces with relaxation length λ (see text) .

Linear response - We consider an FE with metal con-
tacts in a planar configuration with polarization density
p (x) normal to the interfaces, which interacts with an
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electric field E(x) as

H = −
∫
p (x)E (x) dx. (1)

Temperature (∂T ) and electric field (∂E) gradients gen-
erate heat jq and polarization jp current densities. Here
jp denotes the non-equilibrium transport of electrical po-
larization in real space and should not be confused with
the dielectric displacement current, i.e. the time deriva-
tive of the polarization. In the linear response regime,
“currents” and “forces” are related by a matrix of mate-
rial and device-dependent transport coefficients [14, 15].
The caloritronic relations can be summarized by a 2× 2
linear response matrix(

jp
jq

)
= σ

(
1 S
Π κ/σ

)(
∂E
−∂T

)
, (2)

where σ (κ) is the polarization (thermal) conductivity
with units m/Ω (W/m/K), while S (Π) is the ferroelectric
Seebeck (Peltier) coefficient with units V/K/m (V/m).
The dissipation rate ḟ = jp∂E + jq∂T/T implies the
Onsager-Kelvin relation Π = TS. For a mono-domain
simple FE all transport coefficients should be positive.

The electrocaloric (and pyroelectric) properties are
governed by the temperature and field dependent ther-
mal equilibrium polarization p0 (E, T ) and heat/energy
q0 (E, T ) densities with susceptibilities χE = (∂p0/∂E)T
and χT = (∂p0/∂T )E .

Metallic contacts efficiently screen the surface charges.
When shorted, the electric field in the FE vanishes ex-
cept for small corrections due to a finite screening length
[17]. A constant applied voltage 4Vext generates an
electric field Eext = 4Vext/L, but since ∂Eext = 0
there can be no DC Peltier effect. A temperature dif-
ference 4Text between the contacts generates a gradient
∂Text = 4Text/L. The polarization current into a metal
contact is dissipated quickly without measurable effects.
The principle observables are the electric field-induced
Peltier heat current and the Seebeck thermovoltage over
the contacts induced by a polarization change

4V = −
∫
p− p0

ε
dx, (3)

where ε is the dielectric constant.
Diffusion - The conservation relation for the FE polar-

ization reads

∂jp = −ṗ− p− p0

τ
(4)

in terms of the relaxation time τ . A similar equation
holds for the heat accumulation, but we assume from
the outset that it relaxes much faster than that of the
polarization, so the local temperature instantaneously
adapts to the external one. We also assume that ther-
malization of the non-equilibrium ferroelectric order can

be modelled by an equilibrium distribution with a lo-
cal temperature Text (x, t) and a non-equilibrium chem-
ical potential µ (x, t) [12]. It is convenient to define
µtot = µ−PEext, where P is the electric dipole of the unit
cell such that the driving force in Eq. (2) E → −µtot/P.
With p − p0 = χEµ/P + χT (T − T0) , we arrive at the
diffusion equation for the non-equilibrium chemical po-
tential

∂2µ− 1

λ2
µ =

τ

λ2

(
µ̇tot +

PχT
χE

Ṫ
ext

)
(5)

with diffusion length λ =
√
στ/χE . In frequency (ω)

space

∂2µ− µ

λ̄2
= − iωτ

λ2
Ḟext (x, ω) (6)

where Fext = −PEext +χTText/χE and λ2/λ̄2 = 1− iωτ.
For a capacitor with contacts at x1 = 0, x2 = L, using
∂2Fext = 0 and short diffusion lengths λ� L,

µ (x, ω) = A (ω) e−x/λ̄ +B (ω) e−(x−L)/λ̄

+
iωτ

1− iωτ
Fext (x, ω) , (7)

Interfaces - The boundary conditions to the contacts
fix the integration constants A and B. The interface
transport coefficients obey an Onsager relation similar to
Eq. (2). Demanding continuity of the polarization cur-
rent, the boundary conditions for the chemical potential
are governed by an interface conductance G

Gµ
(
0+
)

= σ∂µ
(
0+
)

; Gµ
(
L−) = −σ∂µ

(
L−) . (8)

We focus below on two limiting cases. A good metal
contact efficiently screens the polarization dynamics and
suppresses the chemical potential at the interface. This is
the transparent interface limit G � σ/λ. The opposite
limit of an opaque interface with G � σ/λ represents,
e.g., a contact with a thin non-FE spacer between FE
and the metal.

Solutions - Close to the left interface

µ (x, ω) =
λ

λG
σ +

√
1− iωτ

+
iωτ

1− iωτ

[
∂Fext (ω)− G

σ
Fext (0, ω)

]
(9)

In the DC limit ω → 0

µDC (x) =
λ

λG
σ + 1

e−x/λPS∂Text (10)

The thermovoltage generated by a temperature difference

4VDC = − λ
λG
σ + 1

χE
ε

λ

L
S4Text (11)
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is maximized for an opaque interface G/σ → 0. This volt-
age can be observed when the opposite interface is trans-
parent, i.e. does not accumulate any polarization. In the
symmetric capacitor sketched in Figure 1, the accumu-
lations at the interfaces have equal moduli but opposite
sign and the thermovoltage vanishes. The theoretically
possible maximal thermovoltage in the weakly dissipa-
tive limit (L� λ) for one transparent and one opaque
interface is 4Vmax = −χELS4Text/ (2ε) , which can be
compared with the pyroelectric voltage −χTL4T̄ /ε gen-
erated by a global temperature change 4T̄ . When short-
ing the contacts the charged capacitor generates a charge
current pulse on the scale of the RC time of the circuit.

At finite frequencies, the length and time scales λ
and τ govern the dynamics. We consider the tran-
sients generated by switching on the external perturba-

tion Fext = F
(Θ)
ext Θ (t) , where Θ is the step function, on

a time scale faster than τ . The Fourier transform back
to the time domain can be carried out by contour inte-
gration.

The transient polarization accumulation in the FE at a

transparent (left) interface generated by an electric field
pulse reads

µ (x, t > 0) = −e−t/τPE(Θ)
ext erf

(
1

2

√
τ

t

x

λ

)
. (12)

We recover the pure electrocaloric term in the bulk of the

FE µ (x� λ, t > 0) = −e−t/τPE(Θ)
ext , which dominates

the observable thermovoltage. The polarization current
in the absence of a temperature gradient is caused by
the leakage of the electrocaloric accumulation into the
contact, which on the left side assumes the form

jp (x, t > 0) = σ

√
τ

πt
e−

t
τ−

τ
t (

x
2λ )

2E
(Θ)
ext

λ
, (13)

while that for the right contact has the opposite sign.
The associated Peltier heat current jq = Πjp cools the
FE and heats the contacts or vice versa, with a possible
interface contribution.

In the opaque interface limit

µ (x, t > 0) = PSλ∂TΘ
ext

(
e−x/λ − 1

2

[
e−x/λerfc

(√
t

τ
− x

2λ

√
τ

t

)
+ ex/λerfc

(√
t

τ
+

x

2λ

√
τ

t

)])

+ e−t/τ

[
−F (Θ)

ext +
PχT
χE

∂T
(Θ)
ext

(
x erf

(
1

2

√
τ

t

x

λ

)
+

2λ√
π

√
t

τ
e−

τE
t ( x

2λ )
2

)]
(14)

The polarization current vanishes at the interface x = 0,
but

µ (0, t > 0) = PSλ erf
(√

t/τ
)
∂T

(Θ)
ext +

e−t/τ

[
−F (Θ)

ext (0) + P
χT
χE

∂T
(Θ)
ext

2λ√
π

√
t

τ

]
(15)

We recognize a Seebeck contribution caused by the build-
up of a polarization accumulation/depletion at the inter-
face that approaches the DC limit Eq. (10) for long times.
The second term is purely electrocaloric and corrected for
diffusion by the third term.

Phonon model - The phenomenological theory does
require assumptions about the nature of the ferroelec-
tric phase transition, which may be, e.g., of the “order-
disorder” or “displacive” type. The magnitude of the
caloritronic parameters σ and Π can be either fitted to
experimental results or calculated from a microscopic
model. In the absence of both, we derive here estimates
by a simple model of one-dimensional diatomic chains at
temperatures below the phase transition that generates a
permanent electric dipole P = δQ in each unit cell, where
δ is the deformation and Q the ionic charge. At finite

temperatures the polarization is affected by transverse
phonons (not to be confused with the soft phonons that
trigger a displacive phase transition) with maximum fre-
quency ωop = 2

√
C/M, where M is the ionic mass and C

the force constant. We introduce here the “ferron” model
that the thermal fluctuations leave P invariant, but re-
duce its projection along the FE order. This is a valid
approximation when the intra-dipole longitudinal oscil-
lation frequency is sufficiently higher than ωop and the
inter-dipole frequency. At temperatures kBT � ~ωop the
Boltzmann equation for a constant scattering relaxation
time τr � τ then leads to a Peltier coefficient

Π =
Jq
Jp

∣∣∣∣
∂T=0

=
Cδ2

P
, (16)

and conductivities

σ =
τr
Π2

ω2
op

8a
kBT, (17)

κ = σΠ2/T, (18)

where a is the lattice constant. In this model, the elec-
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trocaloric properties also depend on the Peltier coefficient

χE =
kBT

a3Π2
; χT = − kB

a3Π

(
1− E

Π

)
. (19)

A stiffer material increases the heat relative to the po-
larization current, suppressing polarization caloric and
enhancing caloritronic effects. The figure of merit

ZT = (σ/κ)
(
Π2/T

)
= 1 (20)

does not depend on the model parameters and tempera-
ture (even when kBT ≯ ~ωop).

Estimates - We choose room-temperature material
constants ωop = 5 THz, a = 0.4 nm, P = 2 × 10−29 Cm,

δ = 0.03 nm, C = 25 J/m
2
, τr = 1 ps, and τ = 1 ns

lead to Π = 10 MV/cm, χE = 7 × 10−11 C/(Vm), χT =

−2 × 10−4 C/(Km
2
), κ = 4 W/(Km), σ = 10−15 m/Ω,

λ = 130 nm, and ε/ε0 = 2000 in terms of the vacuum di-
electric constant ε0. These numbers are rather arbitrary,
but close to the parameters of displacive FEs such as
barium titanate. The predicted DC thermovoltage in-
duced by a temperature gradient of ∂T = 10 K/µm at
an opaque interface is then 4V = 2 mV. The integrated
heat flow through a transparent interface

∫
jp (0, t) dt ex-

cited by an electric field pulse of E
(Θ)
ext = 1 MV/cm is

9 J/m
2
. Because of the uncertainties in the parameters

and simplicity of the model these numbers should be
taken with a grain of salt.

Summary - We predict polarization caloritronic effects
in planar capacitors filled with an electrically insulating
ferroelectric that may interfere with normal operation
or be used for energy applications and thermal manage-
ment. The present model can be extended into many
directions, such as Kelvin probe force microscopy of tex-
tured ferroelectric surfaces [18], polar metals [19], and
multiferroics [20]. We focus here on polarization relax-
ation lengths that are short compared to the sample
dimensions, but this is not an essential approximation.
For example, large thermovoltages might be generated
in boron nitride bilayers with a switchable ferroelectric
order [21].
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