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The chiral anomaly is a fundamental quantum mechanical phenomenon which is of great im-
portance to both particle physics and condensed matter physics alike. In the context of QED it
manifests as the breaking of chiral symmetry in the presence of electromagnetic fields. It is also
known that anomalous chiral symmetry breaking can occur through interactions alone, as is the case
for interacting one dimensional systems. In this paper we investigate the interplay between these
two modes of anomalous chiral symmetry breaking in the context of interacting Weyl semimetals.
Using Fujikawas path integral method we show that the chiral charge continuity equation is modi-
fied by the presence of interactions which can be viewed as including the effect of the electric and
magnetic fields generated by the interacting quantum matter. This can be understood further using
dimensional reduction and a Luttinger liquid description of the lowest Landau level. These effects
manifest themselves in the non-linear response of the system. In particular we find an interaction
dependent density response due to a change in the magnetic field as well as a contribution to the
non-equilibrium and inhomogeneous anomalous Hall response while preserving its equilibrium value.

Introduction—Modern condensed matter physics has
benefited greatly from concepts originally introduced in
the context of high energy physics. One such concept
is the chiral anomaly; the breaking of classical chiral
symmetry in a quantum theory [1, 2]. Within QED it
arises through the need to regularize certain loop dia-
grams which contain differences of linearly divergent in-
tegrals. The appropriate regularization can either pre-
serve charge conservation symmetry, chiral symmetry or
some combination of the two but not both. On physical
grounds, the first of these is chosen, which brings about
a source term for the divergence of the chiral current, jµ5 ,
whenever electric and magnetic fields are not orthogonal,

∂µj
µ
5 =

e2

2π2
E ·B. (1)

Here E and B are the electric and magnetic fields and
we have set c = ~ = 1. This expression, although derived
from a single triangle diagram in perturbation theory was
shown to obey non-renormalization theorems; higher or-
der terms cannot modify the form of this equation and
are accounted for by replacing the bare fields and charge
with their renormalized values [3]. Later, this was re-
inforced when it was discovered that the chiral anomaly
manifests in the path integral formalism through the non-
invariance of the measure under a chiral symmetry trans-
formation [4–6].
The chiral anomaly is present for all odd spatial di-

mensions [7–9] but is particularly important in one spa-
tial dimension where it is crucial for the proper treat-
ment of interacting fermionic theories through bosoniza-
tion [10, 11]. A prominent feature therein is that chiral
symmetry breaking can occur due to the presence of in-
teractions even when electromagnetic fields are absent.
Indeed, it is well known, although perhaps not expressed

in this way, that the chiral charge conservation equation
for interacting fermions is [12, 13]

∂µj
µ
5 =

λ2

2π
∂1j

1
5 , (2)

where λ2/2 is the strength of the density-density interac-
tions and the index 1 refers to the spatial direction. By
writing the expression in this form we have separated out
the part which appears due to the non-invariance of the
path integral measure. If an electric field is present also,
it will appear as an additional eE/π term on the right
hand side [14].
Chiral symmetry, is an emergent low energy property

in condensed matter systems, appearing due to an even
number of chiral modes crossing the Fermi surface which
are actually part of the same band. In this respect, the
anomaly can be understood in non-interacting systems
via the pumping of chiral charge through the bottom of
the band from one node to another [14]. Despite not
being a fundamental symmetry, it is intimately related
to many key concepts including the quantized Hall con-
ductance, e.g. through Laughlins’s argument [15], and
more recently the existence of topological metals such as
the Weyl semimetal [16–26]. In this Letter we examine
the interplay between the two modes of chiral symmetry
breaking expressed through (1) and (2) in the context of
interacting condensed matter systems. Specifically, we
show that for purely local four-fermion interactions the
anomaly can be written as

∂µj
µ
5 =

e2

2π2
Ẽ · B̃, (3)

where Ẽ and B̃, defined below, contain the effect of both
the electromagnetic fields in a manner similar to (1) and
the interactions through terms like in (2).
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The effect of interactions in Weyl semimetals has been
considered previously using perturbative means [27–31].
In contrast, our work takes a non-perturbative approach
and considers the interactions from the outset through
the chiral anomaly itself. By utilizing (3) we predict a
number of new non-perturbative phenomena found be-
yond linear response which can be expected in interacting
Weyl semimetals and attributed to the chiral anomaly.
Model—We consider a model of interacting Dirac

fermions, ψ, in the presence of a constant background
magnetic field in 3 + 1 dimensions. The action is S =
S0 + Sint with

S0 =

∫

d4x ψ̄(x)
[

i/∂ + e /A
]

ψ(x), (4)

where we have employed Dirac slash notation and ψ̄ =
ψ†γ0. For later convenience we split the gauge field,
Aµ = Aµ

0 + Ãµ, into a part describing the magnetic field
pointing along the ẑ direction, Aµ

0 = xBzδ
µ
2 and a per-

turbation around it, Ãµ. The magnetic field breaks the
Lorentz invariance down to rotational invariance in the
transverse plane spanned by the x̂ and ŷ directions and
reduced (1 + 1)-d Lorentz symmetry in the longitudinal
directions. The general short range current-current in-
teraction is of the form

Sint = −1

2

∫

d4xλ2µνj
µ(x)jν(x), (5)

where jµ(x) = ψ̄(x)γµψ(x) is the fermion current with
λ2µν = λµαλ

α
ν being the interaction strength. The meth-

ods we outline in this letter are quite general and can be
applied to arbitrary interaction strengths, however for
clarity, at times, we have restricted our focus to special
cases of λ2µν = λ2ηµν , which preserves Lorentz symmetry,
λ2µν = λ20η0µη0ν + λ23η3µη3ν which preserves the reduced
symmetries of our system if λ20 = λ23 and which gives
density-density interaction when λ23 = 0 [32]. Evidently,
depending on the choice of λµν some of the symmetries
of the model may be broken, e.g. Lorentz invariance, but
they do not break the classical chiral symmetry. These
interactions are RG irrelevant and typically are not con-
sidered, however we will see that in the presence of the
constant magnetic field, they should not be discounted.
Chiral Anomaly & Interactions—To study the chiral

anomaly in the presence of interactions we proceed using
a generalization of Fujikawa’s path integral method [4, 5].
The path integral is

I =

∫

D
[

ψ̄ψaµ
]

exp i
{

∫

d4x ψ̄i /Dψ +
1

2
aµa

µ
}

, (6)

where we have introduced the Hubbard-Stratonovich
field aµ(x) which has been included in the general-
ized Dirac operator as Dµ = ∂µ − ieAµ − iλµνa

ν , and
whose equation of motion reads aµ = −λνµjν . Integra-
tion over the auxiliary aµ field gives the original action

S = S0+Sint back. We now perform an infinitesimal chi-
ral transformation, ψ → eiθ(x)γ5ψ, ψ̄ → ψ̄eiθ(x)γ5 which
results in a shift of the action,

S → S +

∫

d4x θ(x) [∂µj
µ
5 −A5(x)] , (7)

where jµ5 (x) = ψ̄(x)γµγ5ψ(x) is the chiral current. The
first term in the brackets arises from the classical shift
of the action itself whereas the second is the anomalous
term which is a result of the non-invariance of the mea-
sure. It takes the standard form A5(x) = 2Tr[θ(x)γ5] or
more explicitly

A5(x) = 2θ(x)
∑

n

ϕ†
n(x)γ5 ϕn(x), (8)

where ϕn(x) are some orthonormal basis of wavefunc-
tions used to expand the Grassmann variables ψ(x) =
∑

cnϕn(x). In the absence of interactions the natu-
ral choice is to take these to be the eigenfunctions of
/D0 = /∂ − ie /A and regularize this divergent sum us-

ing the heat kernel method
∑

n → limM→0

∑

n e
− /D2

0
/M .

Such a choice of basis has the crucial benefit of for-
mally diagonalizing the action. This results in the famil-

iar anomalous term A5(x) = θ(x) e2

16π2FµνFρσǫ
µνρσ with

Fµν = ∂µAν − ∂νAµ and ǫµνρσ is the Levi-Cevita sym-
bol. The chiral anomaly equation (1) then follows. Note
that owing to the fact that {γ5, /D0} = 0 it is evident
from (8) that anomalous term is generated solely by the
zero modes of the Dirac operator.

In the presence of interactions we regularize the
sum using the generalized Dirac operator, includ-
ing the Hubbard-Stratonovich field /D = γµ(∂µ −
ieAµ − iλµνa

ν) (For similar approaches see [33, 34]).
Following the same procedure we find, A5(x) =
θ(x) 1

16π2FµνFρσǫ
µνρσ where Fµν = ∂µ(eAν + λναa

α) −
∂ν(eAµ + λµβa

β) and after integrating over aµ we find

∂µj
µ
5 =

e2

16π2
FµνFρσǫ

µνρσ − e

2π2
ǫµνρσλ2σα∂µAν∂ρj

α

+
1

4π2
ǫµνρσλ2ναλ

2
σβ∂µj

α∂ρj
β . (9)

We see that there are terms depending only on the elec-
tromagnetic field, only on the presence of interactions
and a mixed term requiring the presence of both. After
defining

Ẽi = Ei −
1

e

[

λ2iβ∂0 − λ20β∂i
]

jβ, (10)

B̃i = Bi −
1

2e
ǫijk

[

λ2jβ∂k − λ2kβ∂j
]

jβ , (11)

equation (3) is obtained.

We could view this as a screening, by the interac-
tions of the electric and magnetic fields which are re-
sponsible for the non-conservation of the chiral charge.
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This can be seen more clearly by allowing the electro-
magnetic fields to be dynamical and, for simplicity, con-
sidering λ2µν = λ2ηµ0ην0, i.e. density-density interac-
tions. Upon treating the electromagnetic field in a semi-
classical fashion through ejν = ∂µF

νµ, we find that

Ẽ = E− λ2

e2 ∇ (∇ · E) and B̃ = B. Therefore the anoma-
lous chiral symmetry breaking is generated not only by
the background fields but also by the fluctuations induced
by the interacting matter.

Dimensional reduction to a Luttinger liquid— The chi-
ral anomaly, in the free case, can be straightforwardly un-
derstood through dimensional reduction of the (3 + 1)-d
system to the (1 + 1)-d lowest Landau level (LLL) [14].
This is achieved when the magnetic and electric fields are
parallel to each other. We show now that one can also
arrive at (3) using dimensional reduction provided that
the LLL is described by a Luttinger liquid. We do this by
comparing (9) evaluated for E = Ez ẑ to the anomalous
relation derived from an N -component Luttinger liquid.
Agreement is then found after identifying N with the
LLL degeneracy.

When the electromagnetic fields point only along ẑ,
our anomalous relation then reduces to

∂µj
µ
5 =

e2

8π2
FµνFρσǫ

µνρσ − eBz

2π2
λ2σαǫ

12ρσ∂ρj
α. (12)

Assuming that the interacting system still forms Lan-
dau levels, the zero modes which are responsible for the
anomaly are present only on the LLL. As in the free
case, the magnetic field achieves a dimensional reduction
from the (3+ 1)-d theory to the LLL which is effectively
(1 + 1)-d. Within the LLL the following identity is valid
ǫ12ρσγσ = γ5γ

ρ and after some rearranging we arrive at

∂µj
µ
5 =

1

1 + n0λ23/π

e2

2π2
EzBz −

n0

(

λ20 − λ23
)

/π

1 + n0λ23/π
∂3j

3
5 ,

(13)
where n0 = eBz

2π . Here we have also specialized to the
case where the interaction tensor is diagonal. In deriv-
ing this equation we have assumed that Landau levels
are formed in the interacting system or more precisely
that there is a spin polarized LLL on which the anomaly
is generated. We have made no assumptions on the na-
ture of Landau levels or how they arise, only that they
exist which seems a physically reasonable proposition es-
pecially in the limit of large background field. In the
opposite limit of zero background field (13) reduces to
the noninteracting result.

The second term in (13) is similar to (2) while the
modification of the first has been discovered before in
early studies of interacting (1 + 1)-d fermions [35, 36].
To understand their appearance better we introduce the
following action consisting of N coupled (1+1)-d bosonic

fields

S =

N
∑

j=1

∫

d2x

2π

{

[∂tφj ]
2
+ [∂xφj ]

2 − e [ǫmnAm∂n]φj

+
∑

j≤k

λ20
π
[∂xφj ][∂xφk] +

λ23
π
[∂tφj ][∂tφk]

}

, (14)

with ǫmn the 2-d Levi-Cevita symbol. This is equivalent,
through bosonization, to a system of N flavors of inter-

acting chiral fermions, χ†
±,j =

√
ρ0e

i[±φj−
∫

t dt∂xφj] where
ρ0 is the background density [12, 13]. The bosons are re-
lated to the fermionic charge and chiral charge density
via

∑

σ=± :χ†
σ,jχσ,j : = −∂xφj/π and

∑

σ=± σ :χ†
σ,jχσ,j :

= ∂tφj/π with : : indicating normal ordering.
The model is flavor symmetric and accordingly both

the interactions and the gauge field affect only the sym-
metric combination, φS = 1√

N

∑

j φj . After a canonical

transformation and retaining only the symmetric terms
we arrive at the following action

SS =

∫

d2x

2π

{

(

1 + λ20N/π
)

[∂xφS ]
2 +

(

1 + λ23N/π
)

[∂tφS ]
2

−2
√
NeA0∂xφS + 2

√
NeA3∂tφS

}

. (15)

Note that here the gauge field couples to the fermionic
density rather than through minimal coupling with the
symmetric boson, an important distinction which we
comment on further below. The chiral anomaly is now
manifest in the Euler-Lagrange equation for φS . Cal-
culating this we find agreement with (13) provided one
identifies the number of flavors with the Landau level de-
generacy, N = n0 = eBz/2π as well as j05 =

∑

∂tφj/π
and j35 =

∑

∂xφj/π which follows from the properties of
γµ in (1 + 1)−d.
Our path integral calculation is therefore consistent

with a description of the LLL as a Luttinger liquid. A
Luttinger liquid approach has also been adopted in [37]
to investigate the effect of disorder which we shall not
consider here. The Luttinger liquid consists of a pair of

interacting chiral fermions χ†
±,S =

√
ρ0e

i[±φS−
∫

t dt∂xφS]

formed from the symmetric boson which couple to the
gauge field and the decoupled non-symmetric fields which
play no role. The excitations of the LLL are still chiral
but are distinct from these bare fermions and are cre-

ated by Ψ†
± =

√
ρ0e

i
[

±
√

1+λ2

0
N/πφS−

√
1+λ2

3
N/π

∫

t dt∂xφS

]

which coincide with χ†
±,S only when interactions are ab-

sent. In general these excitations carry different electric
and chiral charges from χ†

±,s which can be seen through

the coefficients of φS and
∫ t
dt∂xφS in the exponential.

Had our gauge field coupled to these instead then we
would find that the chiral anomaly equation was unmod-
ified. A similar situation also arises when comparing con-
ductances in one dimensional systems [38].
As mentioned in the introduction, the chiral anomaly

is related to Laughlin’s argument for quantized Hall con-



4

ductance [15]. Therein one can argue that the invari-
ance of the Hall conductance to local interactions im-
plies invariance of the chiral anomaly for the edge modes
of Laughlin’s cylinder and vice versa. We remark that
our results are not in contradiction to this as our (1+1)-
d chiral modes are not spatially separated as they are
in Laughlin’s argument. In order to see similar interac-
tion effects as ours one would need to include non-local
interactions between the edges.
Consequences for Weyl Semimetals —We now turn our

attention to the consequences of (3) for interacting in-
teracting condensed matter systems, in particular Weyl
semimetals. These are a recently discovered type of gap-
less topological matter possessing a number of distinctive
features which arise due to the chiral anomaly including
a large negative magnetoresistance [14, 39–41] and an
anomalous Hall response [34, 42]. The low energy de-
scription of such systems is given by S = S0 + Sb + Sint

with Sb =
∫

d4x bµj
µ
5 , where bµ separates the Weyl nodes

in momentum and energy space. The effect of this term
is most conveniently seen by performing a chiral rotation
ψ → eibµx

µγ5ψ, ψ̄ → ψ̄eibµx
µγ5 which removes Sb at the

cost of generating a Chern-Simons term, SCS due to the
chiral anomaly. In terms of the Hubbard-Stratonovich
field this is

SCS =

∫

d4x

4π2
ǫνµρσbµ [eAν + λναa

α] ∂ρ
[

eAσ + λσβa
β
]

.

(16)

Then, following [34] we vary S +SCS with respect to A1

to obtain the anomalous Hall current. Specializing to the
case bµ = bzδ

3
µ, λµν = ληµν and after integrating over aµ

we find jx = ebz
2π2 Ẽ

y or more expicitly

jx =
ebz
2π2

Ey − λ2bz
2π2

[∂tj
y − ∂yρ] , (17)

with Ey being the electric field along ŷ and ρ(x) = j0(x).
The first term here gives the quantum anomalous Hall
current while the interaction dependent contribution van-
ishes in equilibrium. Thus, the interactions do not affect
the equilibrium Hall current however they may contribute
to the non-equilibrium or inhomogeneous response. Com-
bining (17) with the corresponding expression for jy and
switching to Fourier space we obtain the homogeneous
finite frequency Hall conductivity expected from SCS ,

σxy(ω) =

[

1 +

(

λ2bz
2π2

ω

)2
]−1

e2bz
2π2

. (18)

The effect of interactions can also be seen in the equilib-
rium density response to a change in the magnetic field,
Bz → Bz + δBz. In the absence of any fields along the
transverse components our anomalous relation reduces to
(13) and upon performing the chiral rotation we obtain

SCS = e2

1+λ2 eBz

2π2

∫

d4x
4π2 ǫ

ν3ρσbzAν∂ρAσ. Varying this with

respect to A0 and subtracting the background density we
obtain the leading order density response,

δj0 =
1

1 + λ2 eBz

2π2

ebz
2π2

δBz. (19)

Due to the dimensional reduction, the density is equiv-
alent to a chiral current in the longitudinal direction,
〈

j0
〉

=
〈

j35
〉

and so (19) can be viewed as the generation
of a chiral current in response to a change in the mag-
netic field which is known as the chiral separation effect
(CSE) [43–45].
Photon Action—As was pointed out in [42] the Chern-

Simons term obtained via chiral transformation requires
some subtle interpretation if it is to describe a Weyl
semimetal. The appropriate understanding comes from
integrating out the fermionic degrees of freedom to de-
termine the linear response. We adopt this approach to
confirm the equilibrium response of the system expected
from SCS . To O(e2), after integrating out the fermions,

S = −e
∫

d3qdω

(2π)4
Tr [Gλ(q, ω)γ

µ] Ã∗
µ(q, ω)

−e
2

2

∫

d3qdω

(2π)4
Ãµ(q, ω)Π

µν
λ (q, ω)Ã∗

ν(q, ω), (20)

where Gλ(q, ω) is the single particle, interacting, Green’s
function in the presence of Bz and bz and Πµν

λ (q, ω) =
∫

d3q′dω′

(2π)4 Tr [γµGλ(q
′, ω′)γνGλ(q

′ − q, ω′ − ω)]. The

anomalous terms we are interested in can then be iso-
lated by considering the leading q, ω → 0 terms which
provide the static homogeneous response.
The evaluation of Gλ(q, ω) cannot be carried out ex-

actly however we are only interested in computing the
density response and the form of (19) suggestive of an
RPA approximation. Indeed, the low energy response
in the longitudinal directions is determined solely by the
LLL whose current and density responses are completely
captured by an RPA summation owing to its reduced di-
mensionality. Using the non-interacting Green’s function
in the Landau level basis derived in [30] we obtain

lim
q→0
ω→0

Πµν
RPA(q, ω) =

[

1

1 + λ2 eBz

2π2

P‖ + P⊥

]µ

ρ

lim
q→0
ω→0

Πρν
0 (q, ω),

(21)
where, for λ2µν = λ2ηµν , P‖ = (1 − γ3)/2 projects onto
the longitudinal components, while P⊥ = 1−P‖ projects
onto the transverse components. When λ2µν = λ2η0µη0ν
we use instead P‖ = [(1−γ3)/2][(1−γ5)/2] which projects
only onto the temporal components. We see here a
screening of the density response due to the interactions
while the transverse components are unaffected. The
equilibrium Hall response is therefore the same as the free
case, in agreement with (17). The linear density response
is then found after computing lim

q→0
lim
ω→0

Π02
0 (q, ω)/iqx. Sur-

prisingly however, this vanishes. Thus the anomalous
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density response comes from the first term in (20) and
can be attributed to the change in degeneracy of the LLL.
The same RPA screening occurs for this term also and
we find agreement with (19).

In the absence of Bz, the density response depends on
all filled bands [42]. When it is present however, this is
not the case and the density response is determined only
by the LLL. Therefore we can understand this by return-
ing to our description of the LLL given in (15). The Sb

term can be accounted for by the inclusion of a chemical
potential term SS,b = −

∫

d2x
√
Nbz∂xφS/π. Recalling

that N = eBz/2π is identified with the degeneracy of the
LLL we compute the density response to N → N + δN
and once again find agreement with (19). Furthermore,
the modification of the anomalous terms is natural from
this viewpoint as we can identify (1 + λ2eBz/2π

2)−1 as
being the charge susceptibility or the chiral charge stiff-
ness of the LLL [12, 13]. This is in agreement with (19)
being viewed either as the density response or the CSE.

Conclusions— In this Letter we have explored the in-
terplay between anomalous chiral symmetry breaking via
electromagnetic fields and interactions. We have shown,
using Fujikawa’s path integral method, that the chiral
charge continuity equation contains new interaction de-
pendent terms which can be absorbed into effective elec-
tromagnetic fields which are responsible for the breaking
of chiral symmetry. Furthermore this result was shown to
be consistent with the lowest Landau level being a Lut-
tinger liquid. We investigated the consequences of this
result for interacting Weyl semimetals and found that
interaction effects will be present in the non-equilibrium
Hall response as well as the density response to a change
in the magnetic field. These results were then reproduced
via direct perturbative calculation.

Recently, it was discovered that the circular photogal-
vanic effect [46], originally thought to be quantized as
a result of the chiral anomaly, is actually renormalized
due to the presence of interactions [47]. It would be de-
sirable to understand our results in the context of this
observable also. Lastly, we note that other anomalous
Ward identities, including the gravitational anomaly can
be derived using Fujikawa’s method and our analysis can
likewise be applied in those situations with the possibility
of additional observable interaction effects [48].
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