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1Université Paris-Saclay, CNRS, LIMSI, 91400 Orsay, France
2Department of Mathematics, University of Houston, Houston, TX 77204-3008, USA

3Department of Mathematics, Texas A&M University 3368 TAMU, College Station, TX 77843-3368, USA
4Helmholtz-Zentrum Dresden-Rossendorf, Germany

(Dated: April 9, 2021)

Combining theoretical arguments and numerical simulations, we demonstrate that the metal pad
roll instability can occur in a centimeter scale set-up with reasonable values of the magnetic field
and electrical current and with metal pairs that are liquid at room temperature. We investigate two
fluid pairs: gallium with mercury (immiscible pair) or gallium with GaInSn eutectic alloy (miscible
pair).

PACS numbers:

Introduction Since 1886, aluminium is produced in
Hall-Héroult reduction cells by driving very large elec-
trical currents through two shallow fluid layers: the top
layer is a mixture of cryolite and alumina and the bot-
tom layer is composed of liquid aluminium. Ideally,
both fluid layers should be at rest, but gravity waves
may spontaneously grow at the interface of the two liq-
uids when a weak ambient magnetic field is present.
This phenomenon, called metal pad roll instability [1–6],
can cause short-circuits that degrade the carbon anodes
faster than it should. Although the physical origin of this
instability has been known for a while [2], there are very
few experiments that reproduce it in less hostile environ-
ment (Hall-Héroult cells operate at around 1000◦C). So
far, only one experiment [7] has succeeded in reproduc-
ing this instability in reasonable conditions. But since
in this experiment stainless steel needles replace the top
fluid layer, comparisons with theoretical fluid-based pre-
dictions are difficult. The idea to use liquid metal pairs
other than cryolite and aluminium is attractive, but it
is also hard to test with classical stability theories [5, 6]
that implicitly assume the conductivity jump to be large.
Using the recent stability theory from [8] and numerical
simulations, we show in this letter that the metal pad
roll instability can occur in a centimeter-scale apparatus
with fairly low electrical currents and imposed magnetic
fields and with pairs of metals that are liquid at room
temperature. We investigate two fluid pairs: (i) gallium
(top layer) with mercury (bottom layer) as an immiscible
case; (ii) gallium (top layer) with eutectic GaInSn alloy
(bottom layer) as a miscible case.

Set-up The idealized set-up investigated in this letter
is shown in Fig. 1-(a). In a cylinder of radius R, a fluid
layer of height H1 and composed of liquid Ga floats on
top of a fluid layer of height H2 and composed of either
Hg (immiscible case) or eutectic alloy Ga67In20.5Sn12.5
(in wt%, miscible case). The cell is subjected to a uni-
form vertical magnetic field Be = Bzez and is traversed
by a homogeneous current density J = Jez. The Sele-
instability mechanism [2] goes as follows (Fig. 1-(b) and

FIG. 1: Sketch of the cylindrical set-up and instability mech-
anism. (a) A layer of gallium floats on a layer of mercury or
eutectic GaInSn alloy. A current J passes through the cell
which is subjected to an external vertical magnetic field Be.
(b) Due to the conductivity difference (gallium is a better con-
ductor), a small excess current j appears as soon as the inter-
face is inclined. This excess current interacts with the exter-
nal magnetic field and generates a Lorentz force j×Be (green
arrows). (c) This force transfers power ((j×Be) ·u > 0) to a
wave that rotates anti-clockwise when seen from above.

(c)): since Ga is a slightly better conductor than Hg and
the GaInSn alloy, any interface elevation reorganizes the
electrical current into J+j in order to pass preferentially
through the Ga; the current excess j interacts with the
external magnetic field and the resulting Lorentz force
j×Be transfers power to a rotating gravity wave.

layer metal ρ (kgm−3) σ ( Sm−1) η (mPas)
1 Ga 6077 3.86×106 1.686
2a Hg 13524 1.03×106 1.51
2b Ga67In20.5Sn12.5 6345 3.24×106 2.05

TABLE I: Material properties at T=303K (from [9, 10] for Ga
and [11] for GaInSn): Ga (Layer 1); Hg (Layer 2a, immiscible
pair); GaInSn eutectic alloy (Layer 2b, miscible pair).

The density ρ, dynamical viscosity η and electrical con-
ductivity σ of both metals are listed in Table I. The im-
miscibility of the pair Ga & Hg is interesting since exper-
iments can be repeated many times with the same fluids.
But since Hg is toxic and regulated, it is also interesting
to investigate the miscible pair Ga & GaInSn eutectic.
The diffusion coefficient D that controls the mixing of Ga
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& GaInSn is not precisely known, but it is conjectured
to be close to 1.7×10−9m2s−1, which is the self-diffusion
coefficient in liquid Ga. The diffusion time-scale R2/D
is about 59000s (16h) for R = 1 cm. Even though this
pair is miscible, the diffusion time is large enough to al-
low many experiments to be conducted without having
to change the fluids in the device.
Theory for immiscible liquids We use the linear the-

ory developed in [8] to assess the stability of rotat-
ing gravity waves in cylindrical cells. Using the nota-
tion of [8], we now recall the key elements of this the-
ory. The vertical deformation of the interface about the
rest state z = 0 is shown therein to be of the form
z ≈ AJm(kr)ei(mθ+ωt)eλt, where A is the arbitrary am-
plitude, Jm is a Bessel function, m ∈ Z is the azimuthal
wavenumber, k = κmnR

−1 is the radial wavenumber,
and κmn is the n-th zero of J ′

m, i.e. J ′

m(κmn) = 0. The
dispersion relation is

ω = ±

√

(ρ2 − ρ1)gk

ρ1 tanh
−1(kH1) + ρ2 tanh

−1(kH2)
, (1)

where g = 9.81ms−2. The growth rate λ is the sum of
three contributions λ = λv + λvv + λvisc. Assuming that
jz|z=H1

= jz |z=−H2
= 0 in order to mimic solid elec-

trodes that do not conduct electricity as well as gallium,
GaInSn alloy or mercury, we find the destabilizing term

λv =
ω

2

JBz

(ρ2 − ρ1)g

m

(kR)2 −m2
Ξ, (2)

with

Ξ =

(σ−1
1 − σ−1

2 )
∑

i=1,2

[

kHi

sinh2(kHi)
+

1

tanh(kHi)

]

∑

i=1,2(σi tanh(kHi))−1
.

(3)
(see supplementary material of [8]). Other types of elec-
trical boundary conditions are discussed in the supple-
mentary material and only weakly affect the instability
as the cell studied here is rather tall. With gallium (fluid
1) and either mercury or GaInSn alloy (fluid 2), we have
(σ−1

1 − σ−1
2 ) < 0. If we choose JBz > 0, only waves

rotating anti-clockwise (mω < 0) can become unstable,
i.e. can be such that λv > 0. This is in agreement with
Fig. 1. The magnetic damping λvv < 0, proportional to
B2

z , is calculated using a numerical approximation of [8,
eq. (2.64)]. The viscous damping λvisc < 0 is available
from [8, eq. (2.66)]. Focusing on cells with H1 = H2 = R
in the centimeter range, we give in Table II numerical
values for λv/JBz, λvv/B

2
z and λvisc for the fundamental

wave (m = 1, κ11 = 1.841), which is always the most un-
stable. Smaller cells have larger λv but are also subject
to more viscous damping. The magnetic damping is in-
dependent of the size of the system. Using R = 2 cm, we
show in Fig. 2 the growth rate λ in the J−Bz plane. The
maximal current density and magnetic field used here

R (cm) |ω| (s−1) λv/(JBz) λvv/B
2
z λvisc (s−1)

1 25.55 1.00×10−4 −39.6 −0.262
2 18.06 7.08×10−5 −39.6 −0.110
5 11.42 4.48×10−5 −39.6 −0.0350

1 6.09 10−4 −115 −0.18
2 4.30 7.1×10−5 −115 −0.0759
5 2.72 4.48×10−5 −115 −0.0242

TABLE II: Theoretical values of the growth rates of the fun-
damental wave m = 1, κ11 = 1.841 in cells with varying size
R = H1 = H2. λv/JBz in units of s−1m2A−1T−1 , λvv/B

2
z in

units of s−1T−2. Rows 2–4: Immiscible fluid pair Ga & Hg.
Rows 5–7: Miscible fluid pair Ga & GaInSn eutectic alloy.

FIG. 2: Growth rate λ in s−1 of the fundamental wave (m = 1,
κ11 = 1.841) in the J − Bz plane in a R = H1 = H2 = 2 cm
set-up with layers of Ga & Hg or Ga & GaInSn eutectic.

are fairly large, J ≤ 3×105Am−2 and Bz ≤ 30mT, but
these values are definitely accessible. This suggests that
the metal pad roll instability can be observed in realistic
set-ups. In Fig. 3 we fix Bz = 15mT and show the the-
oretical growth rate as a function of J and I = JπR2 for
both set-ups.

Numerical simulations We now confront the theory
to numerical simulations done with SFEMaNS [12, 13].
This code combines spectral and finite-element tech-
niques and is designed to solve various magnetohydro-
dynamical problems. We focus on the cell with geometry
R = H1 = H2 = 2 cm. We fix Bz = 15mT and vary J .

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

(62.8) (126) (189) (251) (314) (377)

Ga & Hg: theory

Ga & Hg: simulations

Ga & Ga-In-Sn: theory

Ga & Ga-In-Sn: simulations

FIG. 3: Growth rate λ in s−1 of the fundamental wave (m = 1,
κ11 = 1.841) as a function of J or I in a R = H1 = H2 = 2 cm
set-up with magnetic field Bz = 15mT
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We start by simulating the metal pad roll instability
in the immiscible Ga & Hg set-up. We use a multi-
phase method similar to that of [8, 14]. The main novelty
though is that the incompressibility is now enforced via
an artificial compressibility method which allows for a
better control on the divergence of the velocity. A short
description of the method is provided in the supplemen-
tary material. We initialize the calculation with a small
amplitude rotating gravity wave (m,n) = (1, 1). To cap-
ture correctly the viscous damping, we need to resolve
spatial scales as small as the thickness of the viscous
boundary layer,

√

ν2/ω = 0.08mm. The meridian fi-
nite element grids are locally refined at this scale near
the solid boundary and the fluid interface. The time-
steps are of the order 10−4 s, and we use 32 real Fourier
modes in the azimuthal direction. A convergence study
is reported in the supplementary material. Three sim-
ulations are done with J ∈ (1.5, 2, 3)×105Am−2. We
observe in each case a positive growth rate and the wave
rotates anti-clockwise as expected (see Fig. 1 and video
in the supplementary material). Fig. 4-(a) shows time-

FIG. 4: Simulations in the immiscible Ga & Hg set-up. (a)
Time-series of the velocity at ra = 0, θa = 0, za = −5mm
gives ω. (b) Time-series of ec,1 gives λ (ec,1 is the kinetic
energy of the azimuthal Fourier mode m = 1). (c) Iso-surface
ρ = (ρ1 + ρ2)/2 and turbulent structures in the vertical plane
x = 0 at t = 37 s.

series of the velocity at (ra, θa, za) = (0, 0,−5mm) from
which we obtain ω. We measure ωnum = 17.7 s−1 for
J = 3×105Am−2. This value is very close to the the-
oretical frequency ωth = ω + λvisc = 17.95 s−1 (with
viscosity correction). Fig. 4-(b) shows time-series of
the kinetic energy ec,1 that is carried by the azimuthal
Fourier mode m = 1. The exponential growth is un-
ambiguous and a linear fit allows us to measure 2λ.
We obtain λnum = (0.0436, 0.09584, 0.2003) s−1 for J =
(1.5, 2, 3)×105Am−2. Fig. 3 shows that these values are
in excellent agreement with our theory. Fig. 4-(c) shows
a snapshot of the deformed interface and of the local flow-
speed ‖u‖ at time t = 37 s. Although the growth seems
to be still in the linear stage (see Fig. 4-(b)), the local
flow-speed is already large: U ∼ 8cms−1. In the mercury,
the Reynolds number is about Re = ρ2UR/η2 = 14000.

Transition to turbulence seems to have occurred.
Simulating the metal pad roll instability with the mis-

cible metal pair, Ga & GaInSn, requires a different nu-
merical approach to allow mixing of the metals. Here we
use a model similar to that of [15]. Since it is reasonable
to suppose that In and Sn diffuse at roughly the same
rate in Ga, we use the cumulated mass-concentration of
indium and tin in the alloy ρ IS = ρ In + ρ Sn to track the
composition of the alloy. We suppose that Ga and the
GaInSn eutectic are perfectly separated at time t = 0,
i.e. ρ IS|t=0 = ρeutIS H(−z) where H is the Heaviside func-
tion and ρeutIS = (0.205 + 0.125)ρ2 = 2094 kgm−3 is the
mass concentration of indium and tin combined in the
Ga67In20.5Sn12.5 eutectic alloy (in wt %). The velocity
and the magnetic induction are denoted u and b. We
numerically solve the evolution equations:

ρ∗(∂tu+ (u·∇)u) = −∇p− (ρ∗ + χρ IS)gez

+∇·
(

η∗
(

∇u+ (∇u)T
))

+ j×b, (4a)

∂tb = ∇×(u×b)− µ−1
0 ∇×(σ−1

∗
+ αρ IS)∇×b, (4b)

∇·u = 0, ∇·b = 0, (4c)

∂tρ IS + u·∇ρ IS = D∇
2ρ IS. (4d)

Linear approximations are used for the buoyancy and
the resistivity with χ = (ρ2 − ρ1)/ρ

eut
IS = 0.128 and

α = (σ−1
2 − σ−1

1 )/ρeutIS = 2.368×10−11Ωm4kg−1. The
reference density and conductivity are that of pure Ga:
ρ∗ = ρ1, σ∗ = σ1. These approximations are reasonable
as the material properties vary little between pure Ga and
the GaInSn eutectic. Using the dispersion relation (1)
(with ρ2 tanh

−1(kH2) ≈ ρ1 tanh
−1(kH2) in the denom-

inator) we estimate that the Boussinesq approximation
alters the frequency of gravity waves by less than 1%. We
also use a constant dynamical viscosity η∗ = (η1+η2)/2 =
1.87×10−3Pa s in the alloy. According to [8, Eq. (2.66)]
this affects the viscous damping rate λvisc by less than
0.5%. The no-slip boundary condition and the zero flux
of In and Sn across the boundaries are enforced. The
boundary conditions on the magnetic field are as in [8].
We run simulations with J = (1.25, 1.5, 2)×105Am−2.

FIG. 5: Emergence of a rotating gravity wave in Ga & GaInSn
eutectic (miscible) set-up, J = 1.5×105Am−2. We show the
iso-surface ρ = (ρ1 + ρ2)/2, the density ρ in color code in the
vertical plane x = 0 and lines of excess current j.

The fluids are initially at rest. Contrary to the immis-
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cible case, a long transient precedes the growth of the
gravity wave during which the fluids start to blend by
diffusion. For J = 1.5×105Am−2, we observe a rotating
wave after 90 s, here illustrated by 3 snapshots in Fig. 5.
For the fundamental wave the immiscible theory gives
ωth = ω + λvisc = 4.23 s−1 with J = 1.5×105Am−2.
Here we measure ωnum = 4.22 s−1, which is in excel-
lent agreement with the theory. The growth rates mea-
sured numerically are λnum = (0.0323, 0.0596, 0.106) s−1

for J = (1.25, 1.5, 2)×105Am−2. Fig. 3 shows that these
values agree well with the immiscible theory. Hence the
initial phase of the instability is not affected by the mis-
cibility. Doing long-time simulations with large waves is
very costly: withD = 1.7×10−9m2s−1 and U = 1 cms−1,
the Péclet number is as high as Pe = UR/D = 105.
To gain some insight on the nonlinear regime of the
miscible metal pad roll instability at a reasonable nu-
merical cost, and to gain some insight in a more pes-
simistic scenario in which the Ga and GaInSn eutectic
would blend more easily by diffusion, we now investi-
gate what happens by using a much larger diffusivity:
Dfake = 100D = 1.7 × 10−7m2s−1. In Fig. 6, we show
a snapshot at time t = 31.35 s of the strongly deformed
interface, the excess current, and uy in the plane {x = 0}
(video available in the supplementary material). The
current density is very large J = 4×105Am−2, giving
U ∼ 5 cms−1 and the Péclet number Pefake ∼ 5800 now
numerically accessible. The metal pad roll instability oc-
curs despite the enhanced mixing.

FIG. 6: Simulation with Ga & GaInSn eutectic (misci-
ble set-up) using exaggerated diffusion Dfake = 100D =
1.7×10−7 m2s−1; J = 4×105Am−2; t = 31.35 s. The inter-
face shown here is the iso-surface ρ = (ρ1 + ρ2)/2.

Discussion The present work suggests that experi-
ments on the metal pad roll instability can be done with
pairs of metals that are liquid at room temperature:
Ga & Hg and Ga & GaInSn eutectic. The Ga & Hg
combination is convenient as immiscibility allows exper-
iments to be run many times. But since the toxicity of
Hg raises regulation issues, the Ga & GaInSn combina-
tion is an interesting alternative, although they would
be expensive consumables since they would unavoidably
be blended after a while. The most important message
from our theory is that small set-ups are preferential.
Taking Bz = 15mT as a guide and focusing on the Ga
& Hg pair, let us compare the following three set-ups

R = H1 = H2 = (1, 2, 5) cm. The theory shows that
the critical current densities triggering the MPR insta-
bility are Jc = (1.80, 1.12, 0.65)×105Am−2 and the cor-
responding currents are Ic = (57, 140, 513)A. The values
57A and 140A are reasonable, but 513A may pose seri-
ous technical issues. Hence using Ga & Hg may not be
practical in set-ups larger than a few cm.

In the supplementary material that includes references
[16, 17], we provide a suggestive sketch of an experimen-
tal set-up and discuss a list of difficulties that can be over-
come. Inhomogeneity in the electrical current density
and magnetic field can cause electrovortex flows [18], but
we estimate that a nearly 100% inhomogeneity is needed
for these electrovortex flows to overpower the metal pad
roll flow. Precise electrical boundary conditions on re-
alistic solid electrodes ignored in the model are not so
important because the proposed set-up is non-shallow.
Capillarity, also ignored in the theoretical model, will
have weak effects because the capillary length of the Ga-
Hg system is as small as 0.07 cm ≪ R. Finally, ohmic
heating remains weak and the temperature stays low be-
cause metals are good electrical and thermal conductors.
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