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The Neutron Star Interior Composition Explorer (NICER) recently measured the mass and equatorial radius
of the isolated neutron star PSR J0030+0451. We use these measurements to infer the moment of inertia, the
quadrupole moment, and the surface eccentricity of an isolated neutron star for the first time, using relations
between these quantities that are insensitive to the unknown equation of state of supranuclear matter. We also
use these results to forecast the moment of inertia of neutron star A in the double pulsar binary J0737-3039,
a quantity anticipated to be directly measured in the coming decade with radio observations. Combining this
information with the measurement of the tidal Love number with LIGO/Virgo observations, we propose and
implement the first theory-agnostic and equation-of-state-insensitive test of general relativity. Specializing these
constraints to a particular modified theory, we find that consistency with general relativity places the most
stringent constraint on gravitational parity violation to date, surpassing all other previously reported bounds by
seven orders of magnitude and opens the path for future test of general relativity with multimessenger neutron
star observations.

Introduction.− Neutron stars are some of the most extreme
objects in Nature. Their mass (typically around 1.4 M�) com-
bined with their small radius (between 10 − 14 km) result in
interior densities that can exceed nuclear saturation density
(ρ > 2.8×1014 g/cm3), above which exotic states of matter can
arise [1]. Neutron stars are, next to black holes, the strongest
gravitational field sources known, with typical gravitational
potentials that are five-orders of magnitude larger than that of
the Sun. These properties make neutron stars outstanding lab-
oratories to study both matter and gravity in situations out of
reach in terrestrial and Solar System experiments.

Our current poor understanding of the supranuclear equa-
tion of state translates, via the equations of stellar equilib-
rium, to a large variability on observable properties of neu-
tron stars, such as their masses and radii [2]. This variabil-
ity increases if one lifts the assumption that Einstein’s the-
ory of general relativity is valid in the strong-gravity environ-
ment of neutron star interiors [3]. Modifications to general
relativity generically predict new equations of stellar equilib-
rium, which, when combined with uncertainties on the nuclear
equation of state, jeopardize attempts to test Einstein’s theory
with isolated, neutron star observations.

One possibility to circumvent this issue is to explore
whether relations between neutron-star observables that are
insensitive to either (or both) the equation of state and the
gravitational theory exist. Fortunately, they do. For instance,
when properly nondimensionalized, the moment of inertia (I),
the rotational quadrupole moment (Q) and the tidal Love num-
ber (λ) of neutron stars show a remarkable degree of equation-
of-state insensitivity, at a level below 1% [4, 5]. These “I-
Love-Q” relations also exist in some modified theories of
gravity, although they are different from their general relativ-
ity counterparts [6].

We here combine the first measurements [7, 8] by

NICER [9] of both the mass (M) and equatorial radius (Re)
of the isolated pulsar PSR J0030+0451 [10, 11] with known
equation-of-state insensitive relations involving the compact-
ness C = GM/(Rec2) (see for instance Refs. [12–15]) to in-
fer a number of astrophysical and theoretical physics conse-
quences. Before doing so, let us explain how these relations
are obtained.

Quasiuniversal relations.− Neutron stars can have short ro-
tation periods of the order of milliseconds, so their surfaces
are oblate instead of spherical. The inclusion of this effect
is of critical importance to accurately model the thermal X-
ray waveform that NICER observes, since the X-rays are pro-
duced by hotspots at the star’s surface [16, 17]. The canon-
ical approach to model relativistic rotating stars was devel-
oped in the 1970s [18, 19]. In this approach, the star’s ro-
tation is treated as a small perturbation ε = f / f0 � 1, in-
volving the star’s rotation frequency f and its characteristic
mass-shedding frequency f0 = (GM/R3

e)1/2/(2π). Rotating
stars are then found by perturbing in ε an otherwise nonro-
tating star, which can be obtained by solving the Tolman-
Oppenheimer-Volkoff equations [20]. This slow-rotation ap-
proximation is well-justified for most neutron stars with as-
trophysically relevant spins. Even for a prototypical millisec-
ond pulsar with f = 700 Hz, M = 1.4 M� and Re = 11 km,
one has ε = 0.37. In the case of PSR J0030+0451, its rota-
tion frequency is known to be f? = 205.53 Hz [10, 11], so
ε? = 0.14, when one uses the best-fit M and Re values ob-
tained by NICER [7, 8]. Henceforth, a “?” indicates observ-
ables associated with PSR J0030+0451 .

Using this technique, we numerically calculated over a
thousand neutron star solutions to order ε2 in this pertur-
bative scheme, using a broad set of 46 different equations
of state [21, 22], as detailed in the Supplemental Materials
(SM) [23]. From these solutions, we then numerically com-
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puted the moment of inertia I, the rotational quadrupole mo-
ment Q, the surface eccentricity e, and the electric-type, ` = 2,
tidal Love number λ, which is the dominant parameter in the
description of tidal effects in the late inspiral of neutron star
binaries [24–26]. We nondimensionalized these quantities
through division by the appropriate factors of M and dimen-
sionless spin χ = (2π f0) GĪM/c3, namely: Ī = c4I/(G2M3),
Q̄ = −c4Q/

(
G2M3χ2

)
and λ̄ = c10λ/(GM)5. The surface ec-

centricity e is dimensionless by definition, given in terms of
the star’s equatorial Re and polar Rp radii as e = [(Re/Rp)2 −

1]1/2 [14]. The relations between these nondimensional quan-
tities are strongly insensitive to the equation of state. Due to
the small value of ε? we can neglect higher-order in spin cor-
rections in this expression.

The first step in using the approximately universal relations
on NICER’s first observation is to derive equation-of-state-
insensitive relations between the observables {Ī, Q̄, λ̄, e}, with
respect to the compactness C . Details of these “C -relations”
are given in [23]. Details of these “C -relations” are given in
the SM [23]. Our plan of attack is then clear: use the publicly
available Markov-Chain Monte Carlo (MCMC) M-Re sam-
ples [27, 28] for the best-fit model inferred by two indepen-
dent analysis [7, 8] of the NICER data [29]. Although each
group modeled the surface hotspots differently and used dif-
ferent sampling methods, their results are consistent with each
other. Here we use the results for the three-hotspot model in-
ferred by Miller et al. [8] and the favored single temperature,
two-hotpot ST+PST model from Riley et al. [7] to obtain a
posterior distribution for the compactness, and then use the
approximately universal relations to infer other astrophysical
quantities. We detail this procedure next.

Astrophysical implications.− We begin by constructing a
posterior distribution P(C |NICER) for the compactness C of
PSR J0030+0451, using the MCMC chains [27, 28]. With
this posterior in hand, we then use the C -relations to inferred
posterior distributions for {Ī, λ̄, Q̄, e}.

The implementation of such an inference procedure re-
quires a particular scheme, and we here follow a proposal
that accounts for the approximately universal nature of the re-
lations [22]. In this scheme, the maximum relative error of
each fitting function defines the half-width of the 90% credi-
ble interval of a Gaussian distribution centered at each fitted
value. The posterior distribution for each dimensionless quan-
tity is then calculated using the corresponding C -relation and
the posterior distribution of the compactness, after marginal-
izing over the latter. From these posteriors and using the same
procedure described above, we can also construct posteriors
for the dimensionful versions of these quantities by a change
of variables, marginalize over the nuisance variables mass M
and radius Re, and then do a final rescaling of the posterior
by ε (= 0.14) for the surface eccentricity e and by ε2 for the
rotational quadrupole moment Q. We refer to the SM for de-
tails [23].

The resulting mean and 1σ intervals of these parameters
(both the nondimensionalized and the dimensionful versions)
are shown in Table I; see the SM [23] for plots of the inferred
posteriors. The reported confidence intervals in all of these
quantities account for both the approximate nature of the uni-

Parameter Miller et al. Riley et al.
Ī? (10) 1.31+0.13

−0.11 1.42+0.26
−0.19

λ̄? (102) 4.97+1.92
−1.28 6.75+5.52

−2.69

Q̄? 5.92+0.73
−0.61 6.50+1.38

−1.03

I? (1045 g cm2) 1.71+0.64
−0.48 1.42+0.81

−0.53

Q? (1043 g cm2) 1.49+0.63
−0.45 1.27+0.74

−0.49

e? (10−1) 1.56+0.25
−0.21 1.58+0.29

−0.28

TABLE I. Inferred properties of PSR J0030+0451 using equation-
of-state-insensitive relations combined with the MCMC samples by
Miller et al. [27] and Riley et al. [28]. We report the values within one
standard deviation from the mean, representing approximately 68%
confidence intervals. These values are the first inferences of the mo-
ment of inertia, the eccentricity, the Love number and the quadrupole
moment of an isolated neutron star.

versal relations and the uncertainties in NICER’s observation.
These results are the first inferences on the moment of inertia,
the surface eccentricity, the Love number and the quadrupole
moment of an isolated neutron star.

We can also use NICER’s observation combined with the
I-C relation to estimate the moment of inertia of PSR J0737-
3039A (I1.3381), where the subscript refers to this pulsar’s mea-
sured mass of M = (1.3381 ± 0.0007) M� [30]. The double
pulsar J0737-3039 is expected to provide the first direct neu-
tron star measurement of the moment of inertia [31]. This sys-
tem is the only double-pulsar observed to date, which makes
it an unique laboratory for binary stellar astrophysics [32, 33].
Moreover, an accurate measurement of I1.3381 in combination
with its known mass is expected to strongly constrain the nu-
clear equation of state around once and twice nuclear satura-
tion density [34].

To predict the moment of inertia of PSR J0737-3039A
from NICER’s observation of PSR J0030+0451, we first
need to obtain an estimate for the compactness C1.3381 of
PSR J0737-3039A. This can be approximated by the sub-
stitution {M,Re} 7→ {M0 = 1.3381 M�, Re} at each MCMC
sample [27] and then computing CM0 . This yields an ap-
proximation to the distribution of compactness for a system
with mass M0, which is assumed known and identical to
PSR J0030+0451. This procedure is only justified as long
as M0 is very close to M?, as in the case of PSR J0737-
3039A, whose inferred mass (M0 = 1.3381+0.0007

−0.0007 M�) [30]
is within the 1σ credible interval of NICER’s mass inference
(M? = 1.44+0.15

−0.14 M�) [8].
With an estimate of the compactness of PSR J0737-3039A,

we can now obtain a prediction for PSR J0030+0451’s
moment of inertia repeating the procedure applied to
PSR J0030+0451. Figure 1 shows our result using both
NICER MCMC samples; IMiller et al.

1.3381 = 1.64+0.52
−0.37 × 1045 g cm2,

and IRiley et al.
1.3381 = 1.68+0.53

−0.48×1045 g cm2, together with two other
independent predictions [35, 36]. All predictions are consis-
ten with one another. The anticipated future independent mea-
surement of I1.3381 from continued radio timing of PSR J0737-
3039A will provide another test for nuclear theory and enable
an “I-Love test” of gravity, the latter of which we define next.

Theoretical physics implications.− The combination of the
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FIG. 1. Predictions for the moment of inertia of PSR J0737-3039A.
We compare our predicted I1.3381 using both the MCMC samples
from Miller et al. [27] and Riley et al. [28] against: (i) Landry and
Kumar [35] (“LK18”), which used binary Love [39] and I-Love rela-
tions with the tidal-deformability constraints from binary neutron-
star merger GW170817 [37], and (ii) Lim et al. [36] (“LHS19”)
which carried out Bayesian modeling of a number of equations of
state. The larger moment of inertia that we predict is due to the larger
radii favored by an M ≈ 1.4 M� neutron star by NICER’s observation
relative what is inferred by the two other methods, as I ∼ MR2

e .

inference of I with NICER data described above, and the in-
dependent measurement of λ [37] by the LIGO/Virgo collab-
oration from the binary neutron-star merger GW170817 [38],
allows for the first implementation of an I-Love test [4]. This
test would be the first multi-messenger test of general relativ-
ity with neutron star observables.

The idea of an I-Love test is as follows [4, 5] (see Fig. 2).
Consider two independent indferences of Ī1.4 and λ̄1.4 for a
1.4 M� neutron star. In the (Ī, λ̄)-plane, these measurements
yield a 90% confidence error box. If the I-Love relation in
general relativity, including its small equation-of-state vari-
ability, does not pass through this error box, then there is ev-
idence for a violation of Einstein’s theory, regardless of the
underlying equation of state. Moreover, if any theory of grav-
ity predicts an I-Love curve that also does not pass through
this error box for a given value of its coupling constants, then
the I-Love test places a constraint on the couplings of this the-
ory, which is also independent of the equation of state.

Such a test, however, requires the inference of the tidal de-
formability and the moment of inertia of a neutron star of
the same mass. The LIGO/Virgo collaboration used gravita-
tional wave data to infer the tidal deformability of a 1.4 M�
neutron star to be λ̄1.4 = 190+390

−120 at 90% confidence [40],
obtained under the assumptions that the binary components
were described by the same equation of state and were slowly-
spinning. We can use NICER data to infer the moment of iner-
tia of a 1.4 M� neutron star with the same techniques we used
to predict the moment of inertia of PSR J0737-3039A. For
concreteness, we use the results from Miller et al. [8, 27], but
we verified (see the SM for details [23]) that our conclusions
are essentially the same had we used the results form Riley et
al. [7, 28]. We find that C1.4 = 0.159+0.025

−0.022 and Ī1.4 = 14.6+4.5
−3.3

at 90% confidence. An important underlying assumption be-

hind both inferences is that general relativity is the correct
theory of gravity. The rationale behind this test is detailed in
the SM [23].

Since carrying out such a test on a theory-by-theory ba-
sis would in general be complicated and time-consuming, we
here develop and implement a useful parametrization of the
I-Love test. From Newtonian gravity, we know that Ī scales
with C −2, whereas λ̄ scales with C −5. Therefore, Ī = C Īλ̄λ̄

2/5,
with C Īλ̄ ≈ 0.52 a constant that depends on the equation of
state very weakly [5]. This calculation can be extended, sys-
tematically, in a post-Minkowskian expansion, i.e., an expan-
sion in powers of C � 1 [41]. The outcome is that both Ī and
λ̄ can be written as a power series in C and then be combined
(as just described in the Newtonian limit) to obtain Ī = Ī(λ̄).
The resulting I-Love relation has the same degree of equation-
of-state independence as the original I-Love relation [4]. For
our neutron star catalog, a parameterization in general relativ-
ity of the form

ĪGR = λ̄2/5
(
c0 + c1λ̄

−1/5 + c2λ̄
−2/5
)
, (1)

with c0 = 0.584, c1 = 0.980, c2 = 2.695, is sufficient
to reproduce our numerical data with mean relative error
〈ε Ī〉 6 2 × 10−3. The prefactor λ̄2/5 is the Newtonian result,
while the powers of λ̄−1/5 inside parenthesis are relativistic
(post-Minkowskian) corrections because λ̄−1/5 ∝ C . 0.2.
Given this, we then propose a minimal deformation of the Ein-
steinian parameterization in Eq. (1) of the form

Īp = ĪGR + β λ̄−b/5 , β ∈ R+ , b ∈ Z , (2)

where β and b are deformation parameters that control the
magnitude and type of the deviations from general relativity
in the I-Love relation respectively. Such a parameterization
is similar to that successfully used in gravitational-wave tests
of general relativity by the LIGO/Virgo collaboration, the pa-
rameterized post-Einsteinian framework [42].

We performed such a test of general relativity through the
procedure described earlier. First, we see that the I-Love re-
lation in general relativity does indeed pass this null-test and
it is consistent with the error box. Second, we considered
b ∈ [−2, 5], where the lower limit is set by requiring no devia-
tions at the Newtonian level and the upper limit is set for sim-
plicity. We then fixed b and calculated what the corresponding
value of β = βcrit is, above which the parametrized I-Love re-
lation (2) would be in tension with the inferred (Ī1.4, λ̄1.4) re-
gion at 90% confidence. Our results are summarized in Fig. 2,
where the numbers in parenthesis correspond to (b, βcrit). We
stress that our results for b 6 0 are of course dependent on the
posterior used for λ̄1.4. If one treated the tidal deformabilities
as independent free parameters in the waveform model [38],
then the λ̄1.4 posterior would not have a lower limit, allowing
all curves with b 6 0 to be consistent with both observations.

With these theory-agnostic constraints in hand, we can now
map them to specific theories and place constraints on their
coupling parameters. As an example, let us consider dynam-
ical Chern-Simons gravity, a theory that modifies general rel-
ativity by introducing gravitational parity-violation [43]. This
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FIG. 2. Multimessenger test of general relativity using the
parametrized I-Love relation. The vertical (horizontal) lines delimit
the 90% confidence region (shaded) for λ̄1.4 [40] (Ī1.4, this work),
while the circle marks the median (190, 14.6). The solid black
line corresponds to the I-Love relation in general relativity [Eq. (1)]
and is consistent with the inferred values of Ī1.4, λ̄1.4 at 90% confi-
dence. Starting from b = −2 and moving clockwise, we show the
parametrized I-Love curves (b, βcrit), where b ∈ [−2, 5] and βcrit is
the critical value of β above which the parametrized I-Love relation
[Eq. (2)] fails to pass by the 90% confidence region in the plane.
Here we used the value of Ī1.4 inferred using the results by Miller
et al. [8, 27]. We found similar results using the results by Riley et
al. [7, 28] (See SM [23]).

theory has found applications to several open problems in cos-
mology, such as the matter-antimatter asymmetry and lep-
togenesis [44–47]. It also arises in several approaches to
quantum gravity, such as string theory [48] and loop quan-
tum gravity [49–51]. Mathematical well-posedness requires
the theory to be treated as an effective field theory [52]. In
this formalism, one works in a small-coupling approximation
ζ ≡ 16πα2R−4 � 1, where R = [c2R3

e/(GM)]1/2 is the
curvature length scale associated with a neutron star (in our
case), and where α is a coupling constant with units of length
squared, such that ζ is dimensionless. This theory modifies
Einstein’s only when gravity is strong, and thus, it passes all
Solar System constraints, being only extremely-weakly con-
strained by Gravity Probe B and the LAGEOS satellites, and
table-top experiments, to α1/2 6 108 km [53–55]. This theory
has also evaded gravitational-wave tests [56], making it a key
target to test the constraining power of our new I-Love test.

Let us now map the theory-agnostic deformation of the I-
Love relations in Eq. (2) to dynamical Chern-Simons gravity,

though this methodology could be applied to other theories
as well. As we discuss in the SM [23], The I-Love relation
in this theory can be described by Eq. (2) with bCS = 4 and
βCS = 6.15×10−2ξ̄, where ξ̄ = 16πα2/M4. We can now use our
theory-agnostic constraints on β to place a constraint on α, the
coupling constant of dynamical Chern-Simons gravity. Using
the constraint on β when b = 4, namely βcrit 6 8.84 × 102, and
applying the mapping, yields βCS = 6.15×10−2 ξ̄ 6 8.84×102,
or simply

α1/2 6 8.5 km , (3)

at 90% credibility, if the theory is to be consistent with the
observational bounds on Ī1.4 and λ̄1.4. Using the mean value
C1.4 = 0.159, which implies the mean equatorial radius R1.4 =

13.0 km, we also find that ζ ≤ 0.23 when using Eq. (3), imply-
ing that the small-coupling approximation is indeed satisfied.
This bound is seven-orders of magnitude stronger than any
previous constraints and it is unlikely to be improved upon
with foreseeable gravitational-wave observations [57].

Conclusions and outlook.− The NICER observation of
PSR J0030+0451 allows the extraction of new astrophysical
and theoretical physics inferences when one uses equation-of-
state-insensitive relations. We have here shown the first infer-
ences of the moment of inertia, the quadrupole moment, the
surface eccentricity and the Love number of an isolated neu-
tron star. We have also been able to perform the first theory-
agnostic and equation-of-state independent test of general rel-
ativity by combining NICER and LIGO/Virgo observations.
This test, in turn, was leveraged to produce the most strin-
gent constraint on gravitational parity violation, improving
previous bounds by seven orders of magnitude. This robust
methodology can be applied to future multimessenger obser-
vations of neutron stars with NICER and gravitational wave
observatories, with important implications to nuclear astro-
physics and theoretical physics.

Acknowledgments. We thank Toral Gupta, Fred Lamb,
Philippe Landry and Helvi Witek for various discussions.
We also thank Cole Miller, Sharon Morsink and Kent Yagi
for suggestions that improved this work. We thank the
NICER collaboration for making [27, 28] publicly available.
H.O.S, A.C.-A. and N.Y. are supported by NASA Grants
Nos. NNX16AB98G, 80NSSC17M0041, 80NSSC18K1352
and NSF Award No. 1759615. A.C.-A. also acknowledges
funding from the Fundación Universitaria Konrad Lorenz
(Project 5INV1). A.M.H. was supported by the DOE
NNSA Stewardship Science Graduate Fellowship under Grant
No. DE-NA0003864.

[1] G. Baym, T. Hatsuda, T. Kojo, P. D. Powell, Y. Song, and
T. Takatsuka, “From hadrons to quarks in neutron stars: a re-
view,” Rept. Prog. Phys. 81, 056902 (2018).

[2] F. Özel and P. Freire, “Masses, Radii, and the Equation of State
of Neutron Stars,” Ann. Rev. Astron. Astrophys. 54, 401–440
(2016).

[3] E. Berti et al., “Testing General Relativity with Present and

Future Astrophysical Observations,” Class. Quant. Grav. 32,
243001 (2015).

[4] K. Yagi and N. Yunes, “I-Love-Q,” Science 341, 365–368
(2013).

[5] K. Yagi and N. Yunes, “I-Love-Q Relations in Neutron Stars
and their Applications to Astrophysics, Gravitational Waves
and Fundamental Physics,” Phys. Rev. D 88, 023009 (2013).

http://dx.doi.org/10.1088/1361-6633/aaae14
http://dx.doi.org/ 10.1146/annurev-astro-081915-023322
http://dx.doi.org/ 10.1146/annurev-astro-081915-023322
http://dx.doi.org/10.1088/0264-9381/32/24/243001
http://dx.doi.org/10.1088/0264-9381/32/24/243001
http://dx.doi.org/10.1126/science.1236462
http://dx.doi.org/10.1126/science.1236462
http://dx.doi.org/10.1103/PhysRevD.88.023009


5

[6] D. D. Doneva and G. Pappas, “Universal Relations and Alter-
native Gravity Theories,” Astrophys. Space Sci. Libr. 457, 737–
806 (2018).

[7] T. E. Riley et al., “A NICER View of PSR J0030+0451: Mil-
lisecond Pulsar Parameter Estimation,” Astrophys. J. Lett. 887,
L21 (2019).

[8] M. Miller et al., “PSR J0030+0451 Mass and Radius from
NICER Data and Implications for the Properties of Neutron
Star Matter,” Astrophys. J. Lett. 887, L24 (2019).

[9] K. C. Gendreau et al., “The Neutron star Interior Composition
Explorer (NICER): design and development,” in Proc. SPIE,
Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, Vol. 9905 (2016) p. 99051H.

[10] A. N. Lommen, A. Zepka, D. C. Backer, M. McLaughlin, J. C.
Cordes, Z. Arzoumanian, and K. Xilouris, “New pulsars from
an Arecibo drift scan search,” Astrophys. J. 545, 1007 (2000).

[11] Z. Arzoumanian et al. (NANOGrav), “The NANOGrav 11-year
Data Set: High-precision timing of 45 Millisecond Pulsars,”
Astrophys. J. Suppl. 235, 37 (2018).

[12] J. M. Lattimer and M. Prakash, “The Equation of State of Hot,
Dense Matter and Neutron Stars,” Phys. Rept. 621, 127–164
(2016), arXiv:1512.07820 [astro-ph.SR].

[13] A. Maselli, V. Cardoso, V. Ferrari, L. Gualtieri, and
P. Pani, “Equation-of-state-independent relations in neutron
stars,” Phys. Rev. D 88, 023007 (2013).

[14] M. Bauböck, E. Berti, D. Psaltis, and F. Özel, “Relations Be-
tween Neutron-Star Parameters in the Hartle-Thorne Approxi-
mation,” Astrophys. J. 777, 68 (2013).

[15] C. Breu and L. Rezzolla, “Maximum mass, moment of inertia
and compactness of relativistic stars,” Mon. Not. Roy. Astron.
Soc. 459, 646–656 (2016).

[16] S. M. Morsink, D. A. Leahy, C. Cadeau, and J. Braga,
“The Oblate Schwarzschild Approximation for Light Curves of
Rapidly Rotating Neutron Stars,” Astrophys. J. 663, 1244–1251
(2007).

[17] S. Bogdanov et al., “Constraining the Neutron Star Mass–
Radius Relation and Dense Matter Equation of State with
NICER. II. Emission from Hot Spots on a Rapidly Rotating
Neutron Star,” Astrophys. J. 887, L26 (2019).

[18] J. B. Hartle, “Slowly rotating relativistic stars. 1. Equations of
structure,” Astrophys. J. 150, 1005–1029 (1967).

[19] J. B. Hartle and K. S. Thorne, “Slowly Rotating Relativistic
Stars. II. Models for Neutron Stars and Supermassive Stars,”
Astrophys. J. 153, 807 (1968).

[20] S. L. Shapiro and S. A. Teukolsky, Black holes, white dwarfs,
and neutron stars: The physics of compact objects (1983).

[21] J. S. Read, B. D. Lackey, B. J. Owen, and J. L. Friedman,
“Constraints on a phenomenologically parameterized neutron-
star equation of state,” Phys. Rev. D 79, 124032 (2009).

[22] B. Kumar and P. Landry, “Inferring neutron star properties from
GW170817 with universal relations,” Phys. Rev. D 99, 123026
(2019).

[23] See Supplemental Material, which includes Refs. [58–74], at
LINK, for further details on the equation of state and neu-
tron star catalogues, the C−relations, our inference scheme,
the I-Love relation in dynamical Chern-Simons gravity and the
parametrized I-Love test.

[24] T. Mora and C. M. Will, “Numerically generated quasiequilib-
rium orbits of black holes: Circular or eccentric?” Phys. Rev. D
66, 101501 (2002).

[25] E. E. Flanagan and T. Hinderer, “Constraining neutron star tidal
Love numbers with gravitational wave detectors,” Phys. Rev. D
77, 021502 (2008).

[26] T. Hinderer, “Tidal Love numbers of neutron stars,” Astrophys.

J. 677, 1216–1220 (2008).
[27] M. C. Miller et al., “NICER PSR J0030+0451 Illinois-

Maryland MCMC Samples,” (2019).
[28] T. E. Riley, A. L. Watts, S. Bogdanov, P. S. Ray, R. M. Lud-

lam, S. Guillot, Z. Arzoumanian, C. L. Baker, A. V. Bilous,
D. Chakrabarty, K. C. Gendreau, A. K. Harding, W. C. G.
Ho, J. M. Lattimer, S. M. Morsink, and T. E. Strohmayer, “A
NICER View of PSR J0030+0451: Nested Samples for Mil-
lisecond Pulsar Parameter Estimation,” (2020).

[29] S. Bogdanov et al., “Constraining the Neutron Star Mass–
Radius Relation and Dense Matter Equation of State with
NICER. I. The Millisecond Pulsar X-Ray Data Set,” Astrophys.
J. Lett. 887, L25 (2019).

[30] M. Kramer et al., “Tests of general relativity from timing
the double pulsar,” Science 314, 97–102 (2006), arXiv:astro-
ph/0609417 [astro-ph].

[31] M. Kramer and N. Wex, “The double pulsar system: A unique
laboratory for gravity,” Class. Quant. Grav. 26, 073001 (2009).

[32] I. H. Stairs, S. E. Thorsett, R. J. Dewey, M. Kramer, and C. A.
McPhee, “The Formation of the Double Pulsar PSR J0737-
3039A/B,” Mon. Not. Roy. Astron. Soc. 373, L50–L54 (2006).

[33] R. D. Ferdman et al., “The double pulsar: evidence for neutron
star formation without an iron core-collapse supernova,” Astro-
phys. J. 767, 85 (2013).

[34] J. M. Lattimer and B. F. Schutz, “Constraining the equation of
state with moment of inertia measurements,” Astrophys. J. 629,
979–984 (2005).

[35] P. Landry and B. Kumar, “Constraints on the moment of inertia
of PSR J0737-3039A from GW170817,” Astrophys. J. 868, L22
(2018).

[36] Y. Lim, J. W. Holt, and R. J. Stahulak, “Predicting the moment
of inertia of pulsar J0737-3039A from Bayesian modeling of
the nuclear equation of state,” Phys. Rev. C 100, 035802 (2019).

[37] B. P. Abbott et al. (LIGO Scientific, Virgo), “Properties of
the binary neutron star merger GW170817,” Phys. Rev. X 9,
011001 (2019).

[38] B. P. Abbott et al. (LIGO Scientific, Virgo), “GW170817: Ob-
servation of Gravitational Waves from a Binary Neutron Star
Inspiral,” Phys. Rev. Lett. 119, 161101 (2017).

[39] K. Yagi and N. Yunes, “Binary Love Relations,” Class. Quant.
Grav. 33, 13LT01 (2016).

[40] B. P. Abbott et al. (LIGO Scientific, Virgo), “GW170817: Mea-
surements of neutron star radii and equation of state,” Phys.
Rev. Lett. 121, 161101 (2018).

[41] T. K. Chan, A. P. O. Chan, and P. T. Leung, “I-Love relations
for incompressible stars and realistic stars,” Phys. Rev. D 91,
044017 (2015).

[42] N. Yunes and F. Pretorius, “Fundamental Theoretical Bias in
Gravitational Wave Astrophysics and the Parameterized Post-
Einsteinian Framework,” Phys. Rev. D 80, 122003 (2009).

[43] R. Jackiw and S. Y. Pi, “Chern-Simons modification of general
relativity,” Phys. Rev. D 68, 104012 (2003).

[44] S. Weinberg, “A Tree Theorem for Inflation,” Phys. Rev. D 78,
063534 (2008).

[45] J. Garcia-Bellido, M. Garcia-Perez, and A. Gonzalez-Arroyo,
“Chern-Simons production during preheating in hybrid infla-
tion models,” Phys. Rev. D 69, 023504 (2004).

[46] S. H. Alexander and S. J. Gates Jr., “Can the string scale be re-
lated to the cosmic baryon asymmetry?” JCAP 06, 018 (2006).

[47] S. H.-S. Alexander, M. E. Peskin, and M. M. Sheikh-Jabbari,
“Leptogenesis from gravity waves in models of inflation,” Phys.
Rev. Lett. 96, 081301 (2006).

[48] M. Adak and T. Dereli, “String-Inspired Chern-Simons Modi-
fied Gravity In 4-Dimensions,” Eur. Phys. J. C 72, 1979 (2012).

http://dx.doi.org/ 10.1007/978-3-319-97616-7_13
http://dx.doi.org/ 10.1007/978-3-319-97616-7_13
http://dx.doi.org/10.3847/2041-8213/ab481c
http://dx.doi.org/10.3847/2041-8213/ab481c
http://dx.doi.org/ 10.3847/2041-8213/ab50c5
http://dx.doi.org/10.1117/12.2231304
http://dx.doi.org/10.1086/317841
http://dx.doi.org/ 10.3847/1538-4365/aab5b0
http://dx.doi.org/ 10.1016/j.physrep.2015.12.005
http://dx.doi.org/ 10.1016/j.physrep.2015.12.005
http://arxiv.org/abs/1512.07820
http://dx.doi.org/10.1103/PhysRevD.88.023007
http://dx.doi.org/ 10.1088/0004-637X/777/1/68
http://dx.doi.org/ 10.1093/mnras/stw575
http://dx.doi.org/ 10.1093/mnras/stw575
http://dx.doi.org/ 10.1086/518648
http://dx.doi.org/ 10.1086/518648
http://dx.doi.org/10.3847/2041-8213/ab5968
http://dx.doi.org/ 10.1086/149400
http://dx.doi.org/10.1086/149707
http://dx.doi.org/10.1103/PhysRevD.79.124032
http://dx.doi.org/ 10.1103/PhysRevD.99.123026
http://dx.doi.org/ 10.1103/PhysRevD.99.123026
http://dx.doi.org/10.1103/PhysRevD.66.101501
http://dx.doi.org/10.1103/PhysRevD.66.101501
http://dx.doi.org/10.1103/PhysRevD.77.021502
http://dx.doi.org/10.1103/PhysRevD.77.021502
http://dx.doi.org/10.1086/533487
http://dx.doi.org/10.1086/533487
http://dx.doi.org/10.5281/zenodo.3473466
http://dx.doi.org/10.5281/zenodo.3473466
http://dx.doi.org/ 10.5281/zenodo.3707821
http://dx.doi.org/ 10.5281/zenodo.3707821
http://dx.doi.org/ 10.5281/zenodo.3707821
http://dx.doi.org/10.3847/2041-8213/ab53eb
http://dx.doi.org/10.3847/2041-8213/ab53eb
http://dx.doi.org/10.1126/science.1132305
http://arxiv.org/abs/astro-ph/0609417
http://arxiv.org/abs/astro-ph/0609417
http://dx.doi.org/ 10.1088/0264-9381/26/7/073001
http://dx.doi.org/10.1111/j.1745-3933.2006.00241.x
http://dx.doi.org/10.1088/0004-637X/767/1/85
http://dx.doi.org/10.1088/0004-637X/767/1/85
http://dx.doi.org/10.1086/431543
http://dx.doi.org/10.1086/431543
http://dx.doi.org/ 10.3847/2041-8213/aaee76
http://dx.doi.org/ 10.3847/2041-8213/aaee76
http://dx.doi.org/10.1103/PhysRevC.100.035802
http://dx.doi.org/ 10.1103/PhysRevX.9.011001
http://dx.doi.org/ 10.1103/PhysRevX.9.011001
http://dx.doi.org/10.1103/PhysRevLett.119.161101
http://dx.doi.org/10.1088/0264-9381/33/13/13LT01
http://dx.doi.org/10.1088/0264-9381/33/13/13LT01
http://dx.doi.org/10.1103/PhysRevLett.121.161101
http://dx.doi.org/10.1103/PhysRevLett.121.161101
http://dx.doi.org/ 10.1103/PhysRevD.91.044017
http://dx.doi.org/ 10.1103/PhysRevD.91.044017
http://dx.doi.org/10.1103/PhysRevD.80.122003
http://dx.doi.org/ 10.1103/PhysRevD.68.104012
http://dx.doi.org/10.1103/PhysRevD.78.063534
http://dx.doi.org/10.1103/PhysRevD.78.063534
http://dx.doi.org/10.1103/PhysRevD.69.023504
http://dx.doi.org/ 10.1088/1475-7516/2006/06/018
http://dx.doi.org/10.1103/PhysRevLett.96.081301
http://dx.doi.org/10.1103/PhysRevLett.96.081301
http://dx.doi.org/ 10.1140/epjc/s10052-012-1979-0


6

[49] A. Ashtekar, A. Balachandran, and S. Jo, “The CP Problem in
Quantum Gravity,” Int. J. Mod. Phys. A 4, 1493 (1989).

[50] S. Mercuri and V. Taveras, “Interaction of the Barbero-Immirzi
Field with Matter and Pseudo-Scalar Perturbations,” Phys. Rev.
D 80, 104007 (2009), arXiv:0903.4407 [gr-qc].

[51] L. Smolin and C. Soo, “The Chern-Simons invariant as the nat-
ural time variable for classical and quantum cosmology,” Nucl.
Phys. B 449, 289–316 (1995), arXiv:gr-qc/9405015.

[52] T. Delsate, D. Hilditch, and H. Witek, “Initial value formu-
lation of dynamical Chern-Simons gravity,” Phys. Rev. D 91,
024027 (2015).

[53] S. Alexander and N. Yunes, “Chern-Simons Modified General
Relativity,” Phys. Rept. 480, 1–55 (2009).

[54] K. Yagi, N. Yunes, and T. Tanaka, “Slowly Rotating Black
Holes in Dynamical Chern-Simons Gravity: Deformation
Quadratic in the Spin,” Phys. Rev. D 86, 044037 (2012), [Er-
ratum: Phys. Rev.D89,049902(2014)].

[55] Y. Nakamura, D. Kikuchi, K. Yamada, H. Asada, and N. Yunes,
“Weakly-gravitating objects in dynamical Chern–Simons grav-
ity and constraints with Gravity Probe B,” Class. Quant. Grav.
36, 105006 (2019).

[56] R. Nair, S. Perkins, H. O. Silva, and N. Yunes, “Fundamental
Physics Implications for Higher-Curvature Theories from Bi-
nary Black Hole Signals in the LIGO-Virgo Catalog GWTC-1,”
Phys. Rev. Lett. 123, 191101 (2019).

[57] S. H. Alexander and N. Yunes, “Gravitational wave probes of
parity violation in compact binary coalescences,” Phys. Rev. D
97, 064033 (2018).

[58] H. T. Cromartie et al., “Relativistic Shapiro delay measure-
ments of an extremely massive millisecond pulsar,” Nat. Astron.
4, 72–76 (2019).

[59] M. C. Miller, C. Chirenti, and F. K. Lamb, “Constraining
the Equation of State of High-density Cold Matter Using Nu-
clear and Astronomical Measurements,” Astrophys. J. 888, 12
(2020).

[60] K. Yagi, L. C. Stein, N. Yunes, and T. Tanaka, “Iso-
lated and Binary Neutron Stars in Dynamical Chern-Simons
Gravity,” Phys. Rev. D 87, 084058 (2013), [Erratum: Phys.
Rev.D93,no.8,089909(2016)].

[61] K. Yagi and N. Yunes, “Approximate Universal Relations for
Neutron Stars and Quark Stars,” Phys. Rept. 681, 1–72 (2017).

[62] Y. Ali-Haïmoud and Y. Chen, “Slowly-rotating stars and black
holes in dynamical Chern-Simons gravity,” Phys. Rev. D 84,
124033 (2011).

[63] T. Gupta, B. Majumder, K. Yagi, and N. Yunes, “I-Love-Q Re-
lations for Neutron Stars in dynamical Chern Simons Gravity,”
Class. Quant. Grav. 35, 025009 (2018).

[64] T. Damour and J. H. Taylor, “Strong field tests of relativis-
tic gravity and binary pulsars,” Phys. Rev. D 45, 1840–1868
(1992).

[65] T. Damour and G. Esposito-Farèse, “Tensor multiscalar theories
of gravitation,” Class. Quant. Grav. 9, 2093–2176 (1992).

[66] T. Damour and G. Esposito-Farèse, “Nonperturbative strong
field effects in tensor - scalar theories of gravitation,” Phys. Rev.
Lett. 70, 2220–2223 (1993).

[67] T. Damour and G. Esposito-Farèse, “Tensor - scalar gravity
and binary pulsar experiments,” Phys. Rev. D 54, 1474–1491
(1996), arXiv:gr-qc/9602056.

[68] D. Anderson, P. Freire, and N. Yunes, “Binary pul-
sar constraints on massless scalar–tensor theories using
Bayesian statistics,” Class. Quant. Grav. 36, 225009 (2019),
arXiv:1901.00938 [gr-qc].

[69] P. Wagle, N. Yunes, D. Garfinkle, and L. Bieri, “Hair loss in
parity violating gravity,” Class. Quant. Grav. 36, 115004 (2019),
arXiv:1812.05646 [gr-qc].

[70] N. Yunes, D. Psaltis, F. Ozel, and A. Loeb, “Constraining
Parity Violation in Gravity with Measurements of Neutron-
Star Moments of Inertia,” Phys. Rev. D 81, 064020 (2010),
arXiv:0912.2736 [gr-qc].

[71] H. Sotani, “Pulse profiles from a pulsar in scalar-tensor grav-
ity,” Phys. Rev. D 96, 104010 (2017), arXiv:1710.10596 [astro-
ph.HE].

[72] H. O. Silva and N. Yunes, “Neutron star pulse profiles in scalar-
tensor theories of gravity,” Phys. Rev. D 99, 044034 (2019),
arXiv:1808.04391 [gr-qc].

[73] R. Xu, Y. Gao, and L. Shao, “Strong-field effects in mas-
sive scalar-tensor gravity for slowly spinning neutron stars and
application to X-ray pulsar pulse profiles,” Phys. Rev. D 102,
064057 (2020), arXiv:2007.10080 [gr-qc].

[74] H. O. Silva and N. Yunes, “Neutron star pulse profile obser-
vations as extreme gravity probes,” Class. Quant. Grav. 36,
17LT01 (2019), arXiv:1902.10269 [gr-qc].

http://dx.doi.org/10.1142/S0217751X89000649
http://dx.doi.org/10.1103/PhysRevD.80.104007
http://dx.doi.org/10.1103/PhysRevD.80.104007
http://arxiv.org/abs/0903.4407
http://dx.doi.org/10.1016/0550-3213(95)00222-E
http://dx.doi.org/10.1016/0550-3213(95)00222-E
http://arxiv.org/abs/gr-qc/9405015
http://dx.doi.org/10.1103/PhysRevD.91.024027
http://dx.doi.org/10.1103/PhysRevD.91.024027
http://dx.doi.org/ 10.1016/j.physrep.2009.07.002
http://dx.doi.org/10.1103/PhysRevD.89.049902, 10.1103/PhysRevD.86.044037
http://dx.doi.org/10.1088/1361-6382/ab04c5
http://dx.doi.org/10.1088/1361-6382/ab04c5
http://dx.doi.org/10.1103/PhysRevLett.123.191101
http://dx.doi.org/10.1103/PhysRevD.97.064033
http://dx.doi.org/10.1103/PhysRevD.97.064033
http://dx.doi.org/10.1038/s41550-019-0880-2
http://dx.doi.org/10.1038/s41550-019-0880-2
http://dx.doi.org/10.3847/1538-4357/ab4ef9
http://dx.doi.org/10.3847/1538-4357/ab4ef9
http://dx.doi.org/10.1103/PhysRevD.87.084058, 10.1103/PhysRevD.93.089909
http://dx.doi.org/ 10.1016/j.physrep.2017.03.002
http://dx.doi.org/ 10.1103/PhysRevD.84.124033
http://dx.doi.org/ 10.1103/PhysRevD.84.124033
http://dx.doi.org/ 10.1088/1361-6382/aa9c68
http://dx.doi.org/ 10.1103/PhysRevD.45.1840
http://dx.doi.org/ 10.1103/PhysRevD.45.1840
http://dx.doi.org/ 10.1088/0264-9381/9/9/015
http://dx.doi.org/10.1103/PhysRevLett.70.2220
http://dx.doi.org/10.1103/PhysRevLett.70.2220
http://dx.doi.org/ 10.1103/PhysRevD.54.1474
http://dx.doi.org/ 10.1103/PhysRevD.54.1474
http://arxiv.org/abs/gr-qc/9602056
http://dx.doi.org/10.1088/1361-6382/ab3a1c
http://arxiv.org/abs/1901.00938
http://dx.doi.org/10.1088/1361-6382/ab0eed
http://arxiv.org/abs/1812.05646
http://dx.doi.org/ 10.1103/PhysRevD.81.064020
http://arxiv.org/abs/0912.2736
http://dx.doi.org/ 10.1103/PhysRevD.96.104010
http://arxiv.org/abs/1710.10596
http://arxiv.org/abs/1710.10596
http://dx.doi.org/ 10.1103/PhysRevD.99.044034
http://arxiv.org/abs/1808.04391
http://dx.doi.org/ 10.1103/PhysRevD.102.064057
http://dx.doi.org/ 10.1103/PhysRevD.102.064057
http://arxiv.org/abs/2007.10080
http://dx.doi.org/ 10.1088/1361-6382/ab3560
http://dx.doi.org/ 10.1088/1361-6382/ab3560
http://arxiv.org/abs/1902.10269

	Astrophysical and theoretical physics implications from multimessenger neutron star observations
	Abstract
	References


