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In the last few years, the great utility of exceptional points (EPs) in sensing linear perturbations has been

recognized. However, physical systems are inherently anharmonic and macroscopic physics is most accurately

described by nonlinear models. Considering the multitude of semiclassical and quantum effects ensuing from

nonlinear interactions, the sensing of anharmonicities is a prerequisite to the primed control of these effects.

Here, we propose an expedient sensing scheme relevant to dissipatively coupled anti Parity-Time (anti PT)

symmetric systems and customized for the fine-grained estimation of anharmonic perturbations. The sensitivity

to anharmonicities is derived from the coherence between two modes induced by a common vacuum. Owing to

this coherence, the linear response acquires a pole on the real axis. We demonstrate how this singularity can be

exploited for the enhanced sensing of very weak anhamonicities at low pumping rates. Our results are applicable

to a wide class of systems, and we specifically illustrate the remarkable sensing capabilities in the context of a

weakly anharmonic Yttrium Iron Garnet (YIG) sphere interacting with a cavity via a tapered fiber waveguide.

A small change in the anharmonicity leads to a substantial change in the induced spin current.

In the modern world with proliferating technological ad-

vances, sensing is of fundamental importance, with far-

reaching applications [1–5] across various scientific disci-

plines, with adoptions as particle sensors, motion sensors and

more. Both semiclassical and quantum phenomena provide

us with a wide range of techniques to attain remarkable ef-

ficacy in sensing operations. Over the past decade, non-

Hermitian degeneracies known as exceptional points (EPs) in

[6–10] have rendered a new avenue to engineer augmented

response in an open quantum system [11–20], particularly in

PT-symmetric systems with a commensurate gain-loss profile

[21–24]. Some recent experiments include the demonstration

of enhanced sensitivity in microcavities near EPs [11] and the

observation of higher-order EPs in a coupled-cavity arrange-

ment [12]. While this is a truly remarkable development and

has acquired a lot of traction, these methodologies are cus-

tomized to sense only linear perturbations. One would like to

examine the possibilities of newer sensing techniques, which

could be tapped for the detection of anharmonic perturbations.

In this letter, we demonstrate a new physical basis for the

enhanced sensing of nonlinearities without utilizing a com-

mensurate gain-loss profile. We consider dissipatively cou-

pled systems where the coupling is produced via interaction

with the vacuum of the electromagnetic field [25]. Recently,

anti-PT symmetric systems have been considered for the sens-

ing of linear perturbations [26]. Our scheme, on the other

hand, focuses on the sensing of mode anharmonicities. Dissi-

patively coupled systems have the novel property that vacuum

induces coherence between two modes. The phenomenon of

vacuum induced coherence (VIC) has been the subject of in-

tense activity [27–41] with applications ranging from heat en-

gines [31], nuclear gamma ray transmission [37] to photosyn-

thesis [38] and molecular isomerization in vision [41]. In a

linear system with strong VIC, one of the eigenvalues char-

acterizing its dynamics moves to the real axis. We demon-

strate the great utility of this key property to the sensing of

extremely weak nonlinearities which are, otherwise, difficult

to detect. This new paradigm is applicable generally to a

wide class of systems encountered across various scientific

disciplines. Examples include quantum dots coupled to plas-

monic excitations in a nanowire [42], superconducting trans-

mon qubits [43], quantum emitters coupled to metamaterials

[27–29, 44], optomechanical systems [45], hybrid magnon-

photon systems [46] and more.

We show explicit results on enhanced sensing by employ-

ing the VIC paradigm in an anti-PT symmetric configuration

to the detection of very weak magnetic nonlinearities in a YIG

sphere coupled to a cavity [46–59]. This system is specifi-

cally chosen in view of the ongoing experimental activities.

Dissipative coupling using YIGs has been observed in a mul-

titude of settings, involving, for instance, a Fabry-perot cavity

[46] or a coplanar waveguide [47]. Note that under most cir-

cumstances, weak nonlinearities of the order of nHZ would

require immense drive power to be detected in experiments.

However, a dissipatively coupled system affords a prodigious

response in the magnetization of the YIG which goes up spec-

tacularly with the weakening strength of nonlinearity. That

this response is strongly sensitive to variations in the strength

of anhamonicity underpins the utility of our scheme in sensing

applications.

We start off by considering the general model for a two-

mode anharmonic system, which is pertinent to a wide range

of physical systems. This is characterized by a Hamiltonian

H/~ = ωaa†a + ωbb†b + g(ab† + a†b)

+U(b†2b2) + iΩ(b†e−iωd t − beiωdt),
(1)

where ωa and ωb denote the respective resonance frequencies

of the uncoupled modes a and b, and g constitutes the co-



2

FIG. 1: Schematic of a general two-mode system dis-

sipatively coupled through a waveguide. γa(b) and Γ

describe decay into the surrounding (local heat bath)

and coupling to the fiber (shared bath) respectively.

herent hermitian coupling between them. The parameter U

is a measure of the strength of anharmonicity intrinsic to the

mode b, which is driven externally by a laser at frequencyωd .

The quantity Ω represents the Rabi frequency. In addition,

these modes could be interfacing with a dissipative environ-

ment. Dissipative environments in an open quantum system

fall roughly under two classifications - one, where the modes

are coupled independently to their local heat baths, and an-

other, where a common reservoir interacts with both, as de-

picted in figure (1).

A complete description of the two-mode system, in terms of

its density matrix ρ, is provided by the master equation [25]

dρ

dt
= − i

~
[H, ρ] + γaL (a)ρ + γbL (b)ρ + 2ΓL (c)ρ, (2)

where γa and γb are, respectively, the intrinsic damping rates

of the modes, induced by coupling with their independent

heat baths. The parameter Γ introduces coherences, and the

Liouvillian operator L is defined by its action L (σ)ρ =

2σρσ† − σ†σρ − ρσ†σ. Assuming symmetrical couplings

of the modes to the common reservoir we have the relation

c = 1√
2
(a + eiφb). Here φ = 2πL/λ0 embodies the phase

difference between the two couplings, where λ0 is the reso-

nant wavelength and L the spatial separation between a and b.

Granted that the wavelength of the resonant mode to be much

bigger than the spatial separation, we approximate φ ≈ 0. The

mean value equations for a and b are obtained to be

(

ȧ

ḃ

)

= −iH

(

a

b

)

− 2iU(b†b)R

(

a

b

)

+ Ωe−iωdt

(

0

1

)

, (3)

where H =

(

ωa − i(γa + Γ) g − iΓ

g − iΓ ωb − i(γb + Γ)

)

, R =

(

0 0

0 1

)

,

and the notation 〈.〉 has been dropped for conciseness. In deal-

ing with the nonlinear term, we have taken recourse to the

mean-field approximation 〈X1X2〉 = 〈X1〉 〈X2〉 for any two

operators X1 and X2. A canonical transformation of the form

(a, b)→ e−iωd t(a, b) stamps out the time dependence on the fi-

nal term in (3) and translates H to H (d)
=H −ωd1 without

tampering with the nonlinear term, where 1 is the 2 × 2 iden-

FIG. 2: a) Eigenfrequencies and b) linewidths for an anti-PT

symmetric system, plotted against the detuning, with γ0 set

equal to 0. While EPs emerge at δ = ±2Γ, the VIC-induced

linewidth suppression (designated as X) corresponds to δ = 0.

tity matrix. This transformation takes us to the frame of the

applied laser frequency.

Before proceeding with a generalized treatment, let us first

deconstruct the linear dynamics, i.e. when U is dropped.

Defining δ = ωa − ωb and the mode detunings ∆i = ωi − ωd

(i = a, b), we have the eigenvalues of H given by λ± =
ωa+ωb

2
− i(γ0 + Γ) ±

√

(δ/2 − iγab)2 + (g − iΓ)2], with γ0 =

(γa + γb)/2 and γab = (γa − γb)/2. Contingent on the stability

condition Im(λ±) < 0, which averts exponential amplifica-

tion, the steady-state solutions for the mean values O
(i)
= 〈O〉

(O (i)
= A ,B; i = a, b) would unfold as

A

Γ + ig
=

B

i∆a − γa − Γ
=

Ω

(ωd − λ+)(ωd − λ−)
. (4)

Palpably, the linear response can diverge if one of the eigen-

values moves to the real axis. The feasibility of this property

is explicated for a few special cases in the subsequent discus-

sion.

The generic 2×2 matrix H encompasses two distinct sub-

types: (i) coherently coupled systems with Γ = 0, and (ii) dis-

sipatively coupled systems with g = 0. Two special symme-

tries can be realized within these folds, namely PT-symmetry

(allowed by (i)), which obey (P̂T )H (P̂T ) = H , and anti-

PT symmetry (allowed by (ii)), with (P̂T )H (P̂T ) = −H .

An anti-PT symmetric realization of mode hybridization can

be pinned down by the parameter choices γab = g = 0,

∆a = −∆b = δ/2 and Γ , 0. Clearly, while the modes

are oppositely detuned in character, both of them retain their

lossy nature. Here, it makes sense to switch to the rotat-

ing frame of the laser, where H is substituted by H
(d)

aPT
=

(

δ/2 − i(γ0 + Γ) −iΓ

−iΓ −δ/2 − i(γ0 + Γ)

)

. The shifted eigenvalues

would be obtained as −i(γ0 + Γ) ±
√

δ2/4 − Γ2 for |δ/2| > Γ
and −i(γ0 + Γ) ± i

√

Γ2 − δ2/4 (broken anti-PT) for |δ/2| < Γ.
The behavior of the real and imaginary parts of these eigen-

values is provided in figure 2 (a), (b). As long as the stability

criterion is fulfilled, the responses in (4) are inversely related

to det
[

H
(d)

aPT

]

= (ωd − λ+)(ωd − λ−) = −[δ2/4 + γ0(2Γ + γ0)].

The broken anti-PT phase brings in real singularities at δ = 0
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in the limit γ0 → 0, which is evidenced by the resonant in-

hibition in the imaginary part of λ+, as marked by the point

X in figure 2 (b). The extreme condition γ0 = 0 holds when

none of the modes suffers spontaneous losses to its indepen-

dent surrounding, all the while interacting with the mediat-

ing reservoir. The point X distinguishes an especially long-

lived resonance, which leads to a tremendous buildup in the

steady-state amplitudes. We would demonstrate later how the

inclusion of anharmonicity promptly regularizes the divergent

linear response, with the nonlinear response being highly sen-

sitive to variations in the strength of anharmonicity. This con-

stitutes the bedrock of our sensing scheme.

Note that the point X in anti-PT symmetric systems is func-

tionally analogous to the EP in PT-symmetric systems. The

PT-symmetric configuration for coherently coupled systems

is conformable with the parameter structure ∆ = γ0 = Γ = 0.

The constraint γa = −γb = γab implies that a loss in mode a

must be offset by a commensurate gain in mode b. It follows

that the transition point |γab| = g, which defines the EP, intro-

duces real singularities by quenching the linewidths to nought.

Next, we illustrate the importance of the condition

Im(λ+)→ 0 in the context of the nonlinear response observed

in the system. The nonlinear behavior depends on the intrin-

sic symmetry properties of the matrix H . Specifically, the

extraordinary response achievable in anti-PT symmetric mod-

els yields a convenient protocol for the fine-grained estimation

of weak anharmonicity. We now consider a full treatment of

Eq. (3) by factoring in the effect of U. In the rotating frame,

upon setting g = 0 and choosing γa = γb = γ0, this leads to

the modified steady-state relations:

−(iδ/2 + γ0 + Γ)a − Γb = 0,

−(−iδ/2 + γ0 + Γ)b − 2iU |b|2b − Γa + Ω = 0. (5)

Defining γ = γ0 +Γ and eliminating a, the intensity x = |b|2 is

found to satisfy a cubic relation

β2

γ2 + (δ/2)2
x − 2Uβδ

γ2 + (δ/2)2
x2
+ 4U2x3

= I, (6)

where β = Γ2 − γ2 − (δ/2)2 and I = Ω2. Eq. (6) can

entail a bistable response under the condition Uδ < 0 and

δ2 > 12γ2. However, throughout this manuscript, we operate

at adequately low drive powers to ward off bistable signature.

Now, in the limit γ0 → 0 and δ → 0, β becomes vanishingly

small, and the first two terms in Eq. (6) recede in importance,

for a given Rabi frequencyΩ. Consequently, in the neighbor-

hood of δ = 0, the response becomes highly sensitive to vari-

ations in U. To be more precise, for sufficiently low values of

the detuning, the response mimics the functional dependence

x ≈ (I/4U2)1/3. A tenfold decrease in U, therefore, scales

up the peak intensity of b by a factor of 4.64. In this con-

text, it is useful to strike a correspondence with the sensitivity

in eigenmode splitting around an EP which is typically em-

ployed in PT-symmetric sensing protocols [11, 12, 15]. For

two-mode systems, where the EP is characterized by a square

FIG. 3: Schematic of the cavity-magnonic setup. The mi-

crowave cavity, running transverse to the waveguide, interacts

with the YIG via the transmission line. A static magnetic field

aligned along the z-axis generates the Kittel mode in YIG.

root singularity, this splitting δω scales as the square root of

the perturbation parameter ǫ implying a sensitivity that goes

as
∣

∣

∣

δω
δǫ

∣

∣

∣ ∝ |ǫ|−1/2. However, in our setup, the sensitivity to U in

the response is encoded as
∣

∣

∣

δx
δU

∣

∣

∣ ∝ |U |−5/3.

The importance of the above result in the context of sens-

ing is hereby legitimized for dissipatively coupled systems.

Guided by the recent experiments on dissipatively coupled hy-

brid magnon-photon systems [46–52], we apply these ideas

to the specific example of Kerr nonlinearity in a YIG sam-

ple [59]. However, the bulk of these works have restricted

their investigations to the linear domain. Here, we transcend

this restriction and study the nonlinear response to an exter-

nal drive. We consider an integrated apparatus comprising a

microwave cavity and a YIG sphere, both interfacing with a

one-dimensional waveguide [49, 50], as depicted in figure 3.

Owing to the nonexistent spatial overlap between the cavity

and magnon modes, the direct coupling between them can

be dropped. However, the interaction with the waveguide

would engender an indirect coupling between them. In or-

der to excite the weak Kerr nonlinearity of the YIG sphere, a

microwave laser is used to drive the spatially uniform Kittel

mode. The full Hamiltonian in presence of the external drive

can be cast exactly in the form of Eq. (1), with b superseded

by the magnonic operator m [59, 60].

As discussed earlier, the mediating effect of the waveguide

is reflected as a dissipative coupling between the two modes,

which instills VIC into the system. With the anti-PT sym-

metric choices ∆a = −∆m = δ/2, γa = γb = γ0, and the

redefinition γ0 + Γ = γ, we recover Eq. (6) in the steady

state, with the obvious substitution b → m and x = |m|2 de-

noting the spin current response. We now expound the utility

of engineering a lossless system in sensing weak Kerr non-

linearity. To that end, we zero in on the parameter subspace

Γ = γ = 2π × 10 MHz. Since β = −δ2/4, the contributions

from the first two terms in Eq. (6) taper off as resonance is

approached. As outlined earlier, we find that for all practi-

cal purposes, the nonlinear response can be approximated as

x ≈ (I/4U2)1/3 in the region δ/2π < 1 MHz, which demon-

strates its stark sensitivity to U. A lower nonlinearity begets a

higher response, as manifested in figure 4 (a), where plots of x

against δ are studied at differing strengths of the nonlinearity.

Even at Dp = 1 µW, we observe a significant enhancement in
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FIG. 4: a) The spin current plotted against δ at two dif-

ferent nonlinearities; b) spin currents away from the VIC

condition, compared against the lossless scenario, at dif-

ferent drive powers- for ease of comparison, the blue

and red curves have been scaled up by 10; c) con-

trasting responses observed at a drive power of 1 mW

for two different strengths of nonlinearity; d) sensitiv-

ity for a nonzero coherent coupling g at Dp = 1 µW.

the induced spin current of the YIG around δ = 0. The result

is a natural upshot of the VIC-induced divergent response in

an anti-PT symmetric system in the linear regime. Quite con-

veniently, the inclusion of nonlinearity dispels the seemingly

absurd problem of a real singularity noticed in the linear case.

If Γ < γ, a strong quenching in the response is observed, as

depicted in figure 4 (b). The sensitivity to variations in U also

incurs deleterious consequences. Nevertheless, we can coun-

teract this decline by boosting the drive power. A drive power

close to 1 mW can bring back the augmented response and the

pronounced sensitivity to U (figure 4 (c)). By the same to-

ken, the introduction of coherent coupling g between the two

modes prompts a decline in the sensitivity. The real singu-

larity pertaining to a purely dissipative linear model is now

replaced by a complex one, i.e., with a finite linewidth, bring-

ing down the sharpness of the resonance and similarly, the

sensitivity. Here, a tenfold depreciation in U barely generates

an enhancement factor of 1.39 in the response, as illustrated

in figure 4 (d). This is to be contrasted with the g = 0 case in

figure 4 (a), where the magnification factor is 4.64 for an oth-

erwise identical set of parameters. Propitiously, systems with

zero coherent coupling were engineered in recent experiments

[49, 50]. This mechanism can, thus, serve as an efficient tool

to sense small anharmonicities present in a system.

The protocol hinges on the anti-PT symmetric character and

FIG. 5: a) Real and b) imaginary parts of the

eigenvalues of HNL at a drive power of 0.1 W.

eigenmodes of H , which largely control the dynamics at low

drive powers. At larger drive powers (∼ 0.1 W), the nonlinear

correction in (3) becomes important. This phenomenon can be

understood by studying the modified spectroscopic character

of the system in response to a weak probe field. The nonlinear

effects can be encapsulated as time-varying fluctuations to the

steady-state values, viz. a(t) = a + δa(t), b(t) = b + δb(t). By

virtue of linearization [61], the dynamics of the fluctuations

δξ =
(

δa(t) δb(t) δa†(t) δb†(t)
)T

could be explained through

a higher-dimensional Hamiltonian matrix,

HNL =































− δ
2
− iγ −iΓ 0 0

−iΓ ∆̃ − iγ 0 2Ub2

0 0 δ
2
− iγ −iΓ

0 −2Ub∗2 −iΓ −∆̃ − iγ































, (7)

where ∆̃ = δ
2
+ 4U |b|2. The eigenvalues of this matrix, for

the cavity-magnon setting, appear in figure 5. Strong anhar-

monicity alters the coherence properties of the system, as re-

inforced by the extreme linewidth narrowing observed now

around δ
2γ
= −3.2 in figure 5 (b). Note that the nonlinear

corrections stem from the matrix elements 2Ub2 and −2Ub∗2.

Thus, the higher-dimensional eigensystem attains precedence

over the linear model when the product U |b|2 becomes com-

parable to Γ. However, in the event that U |b|2 ≪ Γ, the non-

linearity acts merely as a perturbation. It is precisely in this

weakly anharmonic regime that our sensing proposal holds

relevance.

In summary, we have proposed a dissipative test bed that

shows enhanced sensitivity to Kerr nonlinearity of the mode,

hence qualifying it as a prototypical agency to gauge the

strength of anharmonic perturbations under optimal condi-

tions. The sensitivity to anharmonicities can be traced down to

the existence of a remarkably long-lived eigenmode of the lin-

ear system, characterized by a vanishing linewidth. The physi-

cal origin of this peculiar behavior lies in an effective coupling

induced between the cavity and the magnon modes in the pres-

ence of a shared ancillary reservoir. Optimal results vis-à-vis

the estimation of nonlinearity are obtained when VIC strongly

dominates, i.e., when spontaneous emissions from the modes

to the surrounding environments become negligible in com-

parison to the waveguide-mediated coupling. Higher drive
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powers lead to new domains of VIC on account of strongly

anharmonic responses. The precise implications of these new

VICs would be a subject of future study. To provide numer-

ical estimates, our analysis has been tailored to demonstrate

a pronounced sensitivity in the context of magnonic excita-

tions. Nonetheless, the essence of our assessment would be

applicable to any two-mode nonlinear system.
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