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A phenomenological free energy model is proposed to describe the behavior of smectic liquid
crystals, an intermediate phase that exhibits orientational order and layering at the molecular scale.
Advantageous properties render the functional amenable to numerical simulation. The model is
applied to a number of scenarios involving geometric frustration, leading to emergent structures
such as focal conic domains and oily streaks and enabling detailed elucidation of the very rich
energy landscapes that arise in these problems.

Smectic liquid crystals are complex fluids that exhibit
orientational order and a layered structure over macro-
scopic distances [1]. Since the layers are nearly incom-
pressible, an immediate consequence is that the material
prefers to locally adopt one of six families of surfaces (in
three dimensions) compatible with constant layer spacing
[2–5]. External constraints may force deformations of the
smectic that are incompatible with the layer constraint,
leading to geometric frustrations and the spontaneous as-
sembly of a wide variety of textures with characteristic
defect structures of the smectic phase [4, 6]. Driven by
advances in surface control, there has been considerable
renewed interest in exploiting the ability of smectics to
repeatably self-assemble over device length-scales by us-
ing surface patterning [7, 8], topographical features such
as grooves [9–12] or posts [13, 14], confinement in droplets
[15–17] or curved surfaces more generally [18], to produce
emergent patterns [19, 20] that are optically active as
lenses, gratings [21], photonic crystals [20] or lithographic
templates [22]. Moreover, defect structures in the texture
act to efficiently trap dispersed micro- or nano-particles,
making smectics useful for hierarchical [23–25] or syn-
ergistic [26] assembly processes that could potentially be
adopted for metamaterial, sensor or solar cell production.
Since many of the remarkable properties of smectics arise
because of the geometric and topological consequences of
layering, they form a paradigmatic model system to un-
derstand geometric frustration in other lamellar phases
such as block copolymers [27, 28], membranes and vesi-
cles [29, 30].

The very complicated structures that emerge in frus-
trated smectics have, however, proven to be very chal-
lenging to model mathematically. While many of the
observed textures have been understood through elegant
geometric approaches [3, 4, 13, 18–20, 26, 31–35], or by
perturbing from the nematic phase [36–38], to date there
have been few successful efforts to use numerical methods
to predict the structures adopted by smectics in general
configurations. Such methods could be of great benefit to
structure prediction where the defects cannot be observed
optically, for example in thin films [39–43]. Furthermore,
scenarios where partial smectic order exists, such as dur-

ing the transition from the nematic to the smectic phase,
may exhibit very complicated pre-transitional structures
[37, 38, 44, 45] and few studies have addressed the connec-
tion between pattern formation and the peculiar critical
behavior of liquid crystals at the nematic-smectic tran-
sition [46]. Dynamical phenomena, such as time-varying
layer spacing [47], interactions between embedded parti-
cles [31] and the evolution of smectic films and bubbles
[48–50] also present difficult problems that appear to re-
quire numerical modelling.

One major obstacle to successful modelling of smec-
tics is the complicated nature of the smectic order. In
the original theory of de Gennes [1], the smectic phase
is characterized by a complex order parameter ψ(r) =
|ψ(r)|eiφ(r) that contains both the amplitude and phase
of the density modulations. It is a remarkably successful
approach, providing a theory of the nematic-smectic-A
transition analogous to the Ginzburg–Landau theory of
superconductivity. Nonetheless, it presents certain chal-
lenges, as reviewed in Pevnyi et al. [51]. The first issue
is due to the topology of the complex order parameter ψ
itself: Im(ψ) does not contain physical information. Sec-
ond, this model is formed on a coarse-grained basis, i.e.,
this energy does not represent the local free energy den-
sity on the length scale of the smectic layers themselves.
To amend these issues, Pevnyi et al. propose a theory
formulated in terms of a real-valued variation δρ(r) from
the average density and a director field n(r), the local
axis of average molecular alignment. Using a real-valued
density variation avoids many of the problems of alter-
native approaches such as using double-valued complex
order parameters [51]. Nonetheless, this theory as pre-
sented is not able to reproduce half-charge defects, due
to the presence of director discontinuities in these defects
[52], which cannot be characterized by a continuous vec-
tor field. For example, around a ±1/2 defect where n
rotates by ±π degrees, a discontinuity line where n re-
verses sign must exist. In fact, since n enters the model
only through the tensor N = n⊗n = ninj , Pevnyi et al.
solve for N instead in their implementation. This allows
them to represent half-charge defects [52], but numeri-
cally enforcing that N is a line field (i.e., of the form
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n⊗n for some unit vector n) in minimization is difficult
[53].

In this Letter, we formulate a theory of smectics suit-
able for finite element simulation and apply it to sev-
eral partially understood problems involving the config-
uration of smectics between antagonistic boundary con-
ditions, i.e., those that favor opposing orientations in-
compatible with the layer constraint. We quantitatively
study the transition from uniform layering to the forma-
tion of defects [54], examine the role of imposed surface
orientation on the configuration of focal conic domains
[44] and predict the structure of oily streaks that occur
in very thin smectic films [21, 41, 43].

We begin with Pevnyi et al.’s proposed energy [51],
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which is to be extremized to obtain stationary solutions
δρ and n subject to the pointwise constraint n · n = 1.
The first three terms in (1) with coefficients a, b and
c are a Landau–de Gennes expansion of the free energy
and set the preferred value of δρ in the uniform state,
q is the wavenumber of the layering, B is a nematic-
smectic coupling parameter, D2 denotes the Hessian op-
erator, K is the elastic constant, and Ω is the domain
of integration. The functional (1) can be derived from
density-functional theory (based on a molecular statis-
tical description), analogous to earlier work on smectics
[55, 56].

Noticing the fact that (1) depends only on elements of
the dyad ninj , Ball & Bedford [57] proposed to modify
(1) by replacing ninj by a uniaxial representation (Q/s+
Id/d)ij , leading to
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Here, s is the scalar order parameter, Id (d ∈ {2, 3}) is
the identity matrix, and Q is a tensor-valued order pa-
rameter. There is no longer any constraint imposed on
the state variables. They proved existence of minimizers
of their modified model, but did not pursue any numer-
ical analysis, or realize any implementation. One can
anticipate numerical difficulties caused by having s on
the denominator, as it is likely to be near zero for defect
structures of physical interest.

Inspired by the modification from Ball & Bedford [57],

we propose the following alternative energy functional:
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where the nematic bulk energy density fn(Q) is
−l
(
tr(Q2)

)
+ l

(
tr(Q2)

)2 in two dimensions and
− l

2

(
tr(Q2)

)
− l

3

(
tr(Q3)

)
+ l

2

(
tr(Q2)

)2 in three dimen-
sions.

We pause to contrast (3) with Ball & Bedford’s for-
mulation (2). In order to avoid possible numerical issues
caused when s ≈ 0, we instead weakly enforce s = 1
by adding the nematic bulk term fn. The global mini-
mizer of the nematic bulk energy

∫
Ω
fn(Q) is known to

be a uniaxial Q-tensor with scalar order parameter s = 1
[58, Proposition 15]. Thus, inclusion of this term both
promotes the favorable scalar order parameter and a ten-
dency towards a uniaxial expression for Q.

A substantial difficulty in obtaining the numerical so-
lution of the minimization problem with (3) arises from
the presence of the Hessian term, which requires δρ ∈ H2

(i.e., square-integrable functions with square-integrable
first and second derivatives). A conforming discretiza-
tion requires the use of C1-continuous elements (i.e., the
approximation is continuous with continuous first deriva-
tives). Constructing these finite elements is quite in-
volved in practice, especially in the three dimensional
case. We therefore turn to the use of nonconforming
discretizations following the so-called C0 interior penalty
approach [59]. Essentially, we use C0-conforming ele-
ments (i.e., continuous without necessarily continuous
first derivatives) and penalize inter-element jumps in the
first derivatives to weakly enforce C1-conformity. To this
end, we add a penalty term to the energy functional (3),
leading to

Fγ(δρ,Q) := F (δρ,Q) +
∑
e∈EI

∫
e

γ

2h3
e

(J∇δρK)2
. (4)

Here, γ is the penalty parameter (we fix γ = 1 throughout
this work), EI is the set of interior facets (edges/faces)
of a mesh, he denotes the size of an edge/face e, and
the jump operator of a vector ∇w on a facet e of two
adjacent cells, labelled K− and K+, is defined to be
J∇wK = (∇w)− ·ν−+(∇w)+ ·ν+ with ν− and ν+ denoting
the restriction of the outward normal to K− and K+, re-
spectively. The numerical analysis of this discretization
will be reported elsewhere. Using a C0 interior penalty
method has the advantages of both convenience and effi-
ciency: the weak form is simple, with only minor modifi-
cations from a conforming method, and fewer degrees of
freedom are used than with a fully discontinuous method.
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Figure 1. Applying a bend deformation to a smectic
liquid crystal. A Bifurcation diagram. B-E Stable stationary
solutions for different values of θ0. The visualization displays
the density variation δρ.

We now apply our discretization of (3) to a class of
problems that encompasses commonly used techniques
to induce self-organized structures in smectics. The liq-
uid crystal is confined between two substrates treated to
promote different preferred molecular orientations and
must somehow interpolate between them, but unlike a
nematic liquid crystal that can achieve this smoothly, a
smectic may be prevented from doing so due to the layer
constraint.

As a simple example, proposed in the classic work
of Williams & Kléman [54], consider the situation de-
picted in Fig. 1 where we impose the director ne =
(cos θ0,− sin θ0) for fixed θ0 ∈ [0, π/2] at the lower
boundary and ne = (cos θ0, sin θ0) at the upper bound-
ary. The corresponding boundary data for the Q-tensor
derived from ne is given in the Supplemental Material
[60]. For θ0 = 0, the boundary conditions become iden-
tical and the resulting configuration is with the layers
extending vertically between the substrates in the “book-
shelf” geometry. As θ0 is increased from zero, the bound-
ary conditions impose a bend deformation on the smectic.
This can be accommodated in several ways: by distribut-
ing the deformation over the vertical direction (Fig. 1B);
by localizing the bend to a region in the center with the
layers flat and tilted in opposite directions in the top
and bottom of the domain (Fig. 1C); or by introducing
edge disclinations to relieve the cost of elastic deforma-
tion (Fig. 1D,E).

The equilibrium structure as a function of θ0 is hence
determined by an energetic competition between the cost
of bending and the cost of introducing disclinations. Us-
ing a technique called deflation [61], we can compute a
bifurcation diagram for this scenario and quantitatively
determine which of these solutions is the ground state
as a function of θ0 (Fig. 1A). Readers may refer to the
Supplemental Material [60] for full details of the problem
setup, an extended presentation of more stationary con-
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Figure 2. Focal conic domains under tilted boundary con-
ditions. Example solutions with A single and B double screw
dislocation defect at θc = π/12. C Stable stationary solutions
for different values of θc. Here, zero isosurfaces of the density
variation δρ are displayed to visualize the layer structure of
the smectic. Among the three solutions shown for θc = π/12,
the FCD solution possesses the lowest energy value, while
double screw dislocation solution has highest value.

figurations computed in this scenario, and a video illus-
trating the lowest energy solutions found as θ0 is varied
(all of which are stable).

A more extreme scenario is where the preferred align-
ment axes at each surface are perpendicular: one favors
planar and the other vertical alignment. The experimen-
tally observed configurations in this case are known as
toroidal focal conic domains (TFCDs): the smectic layers
adopt a configuration consisting of stacked interior sec-
tions of tori, with a central line defect extending between
the two substrates. TFCDs may exist as isolated domains
in a background of vertically oriented smectic layers, or
may self-assemble into a hexagonal lattice [37, 38, 44, 45].
If one of the boundary conditions is perturbed, such as
by introducing a small preferred tilt at either substrate,
asymmetric FCDs may arise where the layers form from
sections of Dupin cyclides [37, 44].

Despite the centrality of TFCDs in the study of smec-
tics, and for applications, prior numerical work on them
has been limited to finding solutions using modifications
of the nematic theory [43]. We therefore verify that
FCDs are stationary solutions of our functional (3) and
characterize their response to tilted boundary conditions.
Specifically, we perturb the zenith angle θc between the
director and the z-axis in the boundary configuration (see
detailed descriptions in the Supplemental Material [60]).
Displayed in Fig. 2 is a sequence of solutions as a func-
tion of θc, the preferred tilt away from the vertical at the
upper substrate. All solutions displayed are stable.

As can be seen in Fig. 2C, we recover the cylindrically
symmetric TFCD for θc = 0; as θc > 0 the solution
becomes asymmetric (Fig. 2C) and the central defect line
becomes a hyperbola, as expected from geometry [3, 4,
18]. Three examples of the solution structures (including
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the single screw dislocation defect presented in Fig. 2B)
at θc = π/12 are animated in the Supplemental Material
[60].

For sufficiently thin films, the elastic energy cost of
two dimensional curvature of the layers observed in the
FCD solutions becomes prohibitive. Instead, the smec-
tic adopts a configuration referred to as an “oily streak”
texture [21, 41, 43]. The structure is periodic in one di-
rection parallel to the substrate and spatially uniform in
the other tangential direction; the periodicity L is experi-
mentally found to increase linearly with the film thickness
τ such that L ≈ L0+4.5τ [42]. Addition of chiral dopants
can be used to control the orientation of the streaks [41].

X-ray diffraction experiments for films 0.15µm ≤ τ ≤
0.35µm (47− 110 layers) indicate that the smectic layer
normals are continuously and uniformly distributed in
orientation with a significant additional peak for smec-
tic layers that are parallel to the plane of the substrate.
An approximate layer structure proposed by Michel et
al. [42] consistent with this data comprises periodic units
incorporating sections of cylinders joined to planes ori-
ented parallel to the substrate (Fig. 3A). This structure
implies, however, significant deformations of the free in-
terface with singular points between units; while undula-
tions of the smectic-air interface are observed by atomic
force microscopy, the amplitude is only around 1/5 of the
film thickness once the finite size of the tip is accounted
for. To address this, the same authors consider more
complex structures incorporating curvature walls [21, 43]
(Fig. 3B) that necessarily imply local dilation of the lay-
ers or local melting into the nematic phase along walls
between units.

For even thinner films τ ∼ 70nm (approx. 22 layers),
X-ray diffraction reveals an apparent excess of the planar
region that cannot be explained by either structure dis-
cussed so far [43]; a possible structure that does so, and is
consistent with the X-ray data, is depicted in Fig. 3C and
incorporates an approximately hemicylindrical Rotating
Grain Boundary (RGB) that partitions the cylindrical
component from the planar component. Such a structure,
with abruptly discontinuous layers, is energetically very
costly and was envisioned in [43] as a mesoscopic approx-
imation: at the nanoscopic level, the RGB might contain
a network of dislocations to include the additional layers,
or locally melt into the nematic phase along the RGB.

Hence, while these ansatz models are very helpful in
that they provide an overall understanding of the struc-
ture and facilitate interpretation of the experimental
data, they incorporate coarse-grained features such as
the RGBs and, moreover, they are not calculated sta-
tionary states of an appropriate free energy functional.
Understanding the detailed structure of the oily streaks
therefore remains an important open problem.

We again use the deflation technique to explore the
stationary states of (3) on a rectangular domain of fixed
vertical dimension and varying aspect ratio L/τ . For sim-

plicity we do not allow for variation of the free surface,
which will be an area of future work, but instead impose
weak anchoring conditions. As with the other numeri-
cal experiments, full details of the boundary conditions,
solvers and choices of parameters are documented in the
Supplemental Material [60]. Furthermore, a video show-
ing the lowest energy configurations as the aspect ratio
L/τ varies is also included, all of which are stable.

A partially enumerated energy landscape is displayed
in Fig. 3D, showing an extremely dense thicket of solu-
tions, but qualitatively supporting earlier work in that
an overall minimizer occurs at an aspect ratio of around
3, which is similar to experimental values even with no
parameter tuning performed here. Close examination of
the energy landscape, together with the corresponding
solution set, shows many small discontinuous jumps that
result from delicate commensurability effects, whereby
certain sizes of domain are compatible with a given pe-
riodicity of the layers as well as from variations in the
number of defects and their detailed placement. Simi-
lar effects have been observed when other periodic liquid
crystals such as cholesterics are confined in domains that
promote geometric frustration [62].

The solution set obtained contains examples reminis-
cent of previously proposed structures (Fig. 3E). The
minimum energy states found at different aspect ratio
contain cylindrical sections mediated by a defect-filled re-
gion reminiscent of the mesoscopic rotating grain bound-
aries. Other solutions displayed in the lowest row of
Fig. 3E are quite different from those heretofore pro-
posed, where regions of relatively vertically oriented lay-
ers sit atop cylindrical regions interspersed with defects.
Each of these incorporates a greater proportion of verti-
cal layers relative to the hemicylindrical-planar ansatz of
Fig. 3A,B and may provide alternative structures for oily
streaks in ultrathin films. In future work, the boundary
conditions at the top interface should be carefully recon-
sidered, including the incorporation of a free interface.
Conclusion—We have formulated a free energy func-

tional for smectics that is amenable to finite element sim-
ulation, and applied it to scenarios involving boundary
conditions that are incompatible with uniform smectic or-
der; our new model successfully reproduces, even without
careful tuning of parameters, a number of experimentally
observed and theoretically expected phenomena, as well
as producing new candidate structures for thin smectic
films that are explicitly stationary states of an energy
functional. We also demonstrate how to overcome a less
obvious difficulty with numerical studies of smectics and
layered media generally: the solution landscapes are ex-
tremely dense due to the presence of defects. The combi-
nation of our model together with the deflation technique
enables detailed exploration of this landscape, enabling
us to isolate both the ground state and low-lying excited
states that may be observed in physical systems.
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Figure 3. Oily streaks. A-C Candidate structures proposed in Michel et al. [42] consistent with X-ray diffraction. D
Bifurcation diagram of structures as a function of aspect ratio L/τ . E Selected stationary states obtained at different aspect
ratios L/τ . The top row represents the lowest energy solution found. For each solution, the value of the energy functional per
unit area is displayed below it with asterisks indicating stable profiles.
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