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Revealing the predominant driving force behind symmetry breaking in correlated materials is
sometimes a formidable task due to the intertwined nature of different degrees of freedom. This is
the case for La2−xSrxNiO4+δ in which coupled incommensurate charge and spin stripes form at low
temperatures. Here, we use resonant X-ray photon correlation spectroscopy to study the temporal
stability and domain memory of the charge and spin stripes in La2−xSrxNiO4+δ. Although spin
stripes are more spatially correlated, charge stripes maintain a better temporal stability against
temperature change. More intriguingly, charge order shows robust domain memory with thermal
cycling up to 250 K, far above the ordering temperature. These results demonstrate the pinning of
charge stripes to the lattice and that charge condensation is the predominant factor in the formation
of stripe orders in nickelates.

Emergent phenomena in strongly correlated materials
arise due to multifarious interactions among charge, spin
and lattice degrees of freedom. Such complexity ham-
pers the ability to understand their remarkable states
and realize new functionalities [1]. Identifying dominant
interaction is, however, challenging as different interac-
tions act simultaneously and can yield complex ground
states with more than one form of order [2]. A rep-
resentative phenomenon of this type is the electronic
stripes that appear in various strongly correlated ma-
terials [3–6]. These effects have been considered ex-
tensively in cuprate high-temperature superconductors,
which host charge and sometimes spin stripe order, typ-
ically with a simple factor-of-two relationship between
the charge and spin incommensurabilities [7–9]. Nicke-
lates also host both superconductivity and stripe order
[10–12], but no system has yet been shown to simulta-
neously host both orders. The existence of stripe order
in La4Ni3O8, which appears rather similar to supercon-
ducting Nd1−xSrxNiO2 [13–16], does, however, support
the likely proximity of stripe order and superconductiv-
ity. While static stripe order appears to suppress bulk
3D superconductivity, some researchers have suggested
that stripe fluctuations may act to promote supercon-
ductivity [17–19]. Therefore, understanding the driving
forces behind charge and spin stripe formation and dy-
namics in strongly correlated materials has attracted con-
siderable attention and may be crucial to understanding
unconventional superconductivity. Stripe formation has

been studied in the past through detailed measurements
of stripe transition temperatures and correlation lengths
[20–28] and associated Landau model analysis [29, 30].
The problem has also been addressed via model Hamil-
tonian analysis that suggested that lattice coupling might
be crucial to stabilize stripes [31, 32]. The implementa-
tion of resonant X-ray photon correlation spectroscopy
(XPCS) at modern low-emittance synchrotron sources
opens new routes to directly probe stripe formation and
dynamics [33–36].

Herein, we report the first resonant XPCS experiment
to simultaneously probe charge order (CO), spin order
(SO) and lattice coupling in a stripe-ordered material,
focusing on the prototypical material La2−xSrxNiO4+δ

(LSNO) with x = 0.225 δ = 0.07. Although SO is more
correlated and stable at 70 K, CO is more robust in
temporal stability against temperature changes, which
we attribute to electron-phonon coupling (EPC). This is
further supported by our discovery that the CO domains
are effectively pinned to the lattice and the corresponding
speckle patterns remain highly reproducible with thermal
cycling up to 250 K, well above the transition tempera-
ture TCO. SO, however, is not directly coupled to the
lattice and loses its domain memory once the sample is
warmed across the magnetic transition temperature TSO.
These results imply that charge condensation, and its
coupling to the lattice and disorder, is the driving force
behind stripe ordering.

X-ray measurements were carried out at the Coher-
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FIG. 1. Experimental configuration and charge order (CO)
and spin order (SO) superlattice peaks. (a) The instrumental
setup for the measurements at CSX. The X-ray beam is set
to the Ni L3-edge energy and tuned in order to maximize the
strength of the CO and SO intensity [37]. It then propagates
through the pinhole and is scattered by the La2−xSrxNiO4+δ

(LSNO) sample onto the detector. For the domain memory
study, a 0.5 µm thick Pt mask was deposited on the sample
[37]. (b) An optical micrograph of the Pt mask on the (110)
surface of LSNO single crystal. (c) Temperature dependence
of the correlation lengths along [H, H, 0] and [0, 0, L] di-
rections. The correlation length is defined as ξ = d/HWHM
where HWHM stands for half-width at half-maximum in re-
ciprocal lattice units and d is the unit cell size in the appropri-
ate direction [38]. (d) Temperature dependence of the peak
heights evaluated from fitting of the CO and SO superlattice
peaks, which are normalized according to their values at 60 K.
The signals were fitted with a three-dimensional Lorentzian
function. (e) Incommensurability defined by the peak posi-
tion of CO Q vector as a function of temperature. The shaded
areas indicate the onset temperature range for CO and SO.

ent Soft X-Ray (CSX) 23-ID-1 beamline at the National
Syncrotron Light Source II with X-ray energy tuned to
the Ni L3-edge (Fig. 1a). The LSNO single crystal was
synthesized by the floating-zone method with a Sr con-
centration of x = 0.225 [39]. As shown later, the CO
incommensurability is ε ≈ 0.27, larger than x, which
is likely related to oxygen doping since δ = 0.07 [40].

The sample’s surface normal was close to the [H, H,
0] direction. Thus, we made (H, H, L) the scattering
plane and focused on peaks with QCO = (ε, ε, 1) and
QSO = (1/2− ε/2, 1/2− ε/2, 0) [37]. The reciprocal lat-
tice units (r.l.u.) is defined in terms of Q = (H, K, L) =
(2π/a, 2π/b, 2π/c) within the space group I4/mmm and
a = b = 3.84 Å, c = 12.65 Å. For the domain memory
measurements, we used a 0.5 µm thick Pt mask, which
had been deposited on the sample in order to repro-
ducibly illuminate the same sample volume independent
of possible thermal drifts in the sample position (Fig. 1b)
[37].

We start by characterizing the superlattice peaks cor-
responding to CO and SO at different temperatures us-
ing standard resonant X-ray diffraction. With decreas-
ing temperature, the peak heights first increase substan-
tially through the transition temperatures along with en-
hanced correlation lengths for both CO and SO (Fig. 1c,
d). Below ∼70 K, the peak heights drop and the spa-
tial correlations are relaxed, consistent with previous re-
ports [26, 41, 42]. The reason for this is not uniquely
determined, but it may be connected to a spin reorien-
tation at lower temperature [27] or the influence of spin
exchange interactions [26]. Throughout the temperature
range, the correlation lengths along [H, H, 0] direction
are much larger than those along [0, 0, L] and SO pos-
sesses a larger correlation length than CO (Fig. 1c). Due
to the critical fluctuations and short-range correlations
near the phase transitions, the onset temperatures, TCO

and TSO, are not uniquely defined. We estimate them
both to occur between 96 and 114 K. Regarding the in-
commensurability, the inter-site Coulomb repulsion tends
to stabilize ε equal to the hole concentration [43], while
the commensurability effect optimizes stripe formation at
x = 1/3. The actual incommensurability is a compromise
of these two factors [23]. With increasing temperature,
thermal fluctuations are expected to start to outcompete
Coulomb repulsion [41, 44, 45], driving the incommensu-
rability closer to 1/3 at higher temperature (Fig. 1e).

To elucidate the temporal stabilities of CO and SO, we
employ XPCS to study the domain distribution and its
fluctuations. In XPCS, the coherent photons scattered
by different domains interfere with each other, leading
to a complex “speckle” pattern modulated by the usual
diffraction lineshape [33, 34, 36, 46–48]. Figure 2a, b
shows the representative speckles of the CO and SO su-
perlattice peaks at 70 K. The shape of the peak envelope
is determined by the spatial correlations and instrument
geometry. In particular, the horizontal width of the SO
peak is mainly determined by the correlations along the
[-1, 1, 0] direction while the vertical width is dominated
by c axis correlations, elongating the envelope vertically.
For the CO peak, the vertical width has less contribu-
tion from c axis correlations so that the envelope appears
more isotropic. Meanwhile, the distribution of the under-
lying stripe domains is encoded in the positions of the
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FIG. 2. Speckle patterns of CO and SO. (a),(b) Represen-
tative detector images around the CO and SO superlattice
peaks measured with a 10 µm pinhole. The white pixels arise
from the beamstop or detector errors and are omitted from
the data. (c),(d) Line cuts through the horizontal red dashed
lines in (a) and (b). The envelope of the peak is estimated
by smoothing and fitting processes that are shown as red and
orange lines, respectively. The black dashed lines are uniform
fluorescent background evaluated from fittings.

speckles [35], and the shape of the speckles is determined
by the Fourier transform of the beam footprint projected
onto the detector. The non-zero L component of the CO
peak makes the footprint of the beam more anisotropic.
To show the speckle modulation more clearly, we present
in Fig. 2c, d the line cuts through the red dashed lines
in Fig. 2a, b. The peak envelope is estimated by two in-
dependent methods: smoothing with the Savitzky-Golay
filter and fitting with a squared Lorentzian function. The
sharp speckle modulation observed here indicates that
the fluctuations for CO and SO are slower than the time
windows of the measurements, which is 1 s at 70 K [37].
Otherwise the contrast of the interference patterns will
be significantly reduced [33].

In order to quantify the fluctuation timescale, we mea-
sure the time dependence of the speckle patterns and cal-
culate the normalized one-time correlation function [33]

g2(τ) =
〈I(t)I(t+ τ)〉
〈I(t)〉2

= 1 + β|F (τ)|2, (1)

where I represents the total intensity including back-
ground, τ is the lag time and 〈. . .〉 stands for the time
and ensemble average. The time-dependent evolution can
be extracted from the intermediate scattering function,
|F (τ)|, which describes the correlation of the speckle pat-
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FIG. 3. Temporal stability of CO and SO. (a),(b) Time de-
pendence of the intermediate scattering functions at different
temperatures. The solid lines are guides to the eye. (c),(d)
The scattering functions after certain time delays.

terns separated by a certain time delay. In a statically or-
dered system, |F (τ)| will remain unchanged while speckle
dynamics causes it to drop as a function of time delay.
Distinct from La2−xBaxCuO4 (LBCO), in which the CO
is static over a timescale of at least two hours [33, 34],
|F (τ)| in LSNO decays after several minutes for both CO
and SO, indicating charge and spin dynamics (Fig. 3).
Moreover, we find that CO and SO are both most stable
around 70 K when they have longest correlation lengths,
but SO is more stable than CO at 70 K. Although stripes
involve a co-modulation of both charge and spin [30], we
observe that these have different thermal evolution. As
temperature is driven away from 70 K, the temporal sta-
bility for SO decreases faster, indicating that SO is less
stable against temperature changes. A qualitatively, but
not quantitatively similar trend in SO was reported re-
cently in Ref. [36]. The longer timescales observed here
may reflect sample discrimination in strontium and oxy-
gen compositions or improved coherent flux and stability
at CSX compared to the Advanced Light Source.

From simple energetic considerations, if an order is less
temporally stable and has shorter correlation lengths one
would expect it to be more fragile to thermal disturbance.
The unexpected robustness of CO against temperature
changes indicates that CO is coupled to other degrees of
freedom which constrain the CO domains during/after
the charge condensation (Fig. 3). Such hypotheses can
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FIG. 4. Domain memory in CO but not SO. (a),(b) Representative speckle images before and after thermal cyclings which
are indicated by the curved arrows. The open circles stand for the cycling temperatures, Tcycle. For each measurement, we
collected images at 70 K, changed the temperature to Tcycle and waited for 10 minutes. Then the sample was cooled back
to 70 K and equilibrated for 30 minutes before collecting another image. For both the heating and cooling processes, the
temperature ramping rate was fixed to 4 K/min. The white bar in the first speckle image indicates 10−3 Å−1. (c) Temperature
dependence of the normalized speckle cross-correlation function, ξCC. The solid and dashed lines are guides to the eye. The
shaded area indicates the range of CO and SO transition temperatures.

be examined more deeply in term of domain pinning
memory effects. Since the speckle positions are primar-
ily determined by the positions of the ordering domains,
the comparison of speckle patterns collected at 70 K be-
fore and after cycling the sample temperature to Tcycle
can evaluate whether the domain distributions are re-
produced [35]. The usage of Pt mask further ensures
that the illuminated sample volume is fixed through-
out the thermal cycling (Fig. 1b). It turns out that
the speckle patterns of CO are rather similar with Tcycle
up to 250 K, well above TCO (Fig. 4a). The SO speck-
les, however, change their positions once Tcycle crosses
TSO (∼ 100 K) (Fig. 4b). This effect can be quantified
by calculating the normalized cross-correlation function
ξCC which describes the similarity between two speckle
patterns [35, 37]. ξCC approaches zero when the two
speckle images are different while two identical images
will give ξCC of one. Correspondingly, we calculate ξCC

for both CO and SO speckle patterns with different Tcycle
(Fig. 4c). The results again show that CO domain distri-
butions are essentially unchanged after thermal cycling
to a temperature far above TCO while SO speckle pattern
loses reproducibility after the system is driven into the
disordered state.

The domain memory effect of CO is caused by cou-
pling to the host lattice. Local potentials arising from
structural disorder induced, for example, by Sr doping,
structural domain boundaries or octahedral tilts, provide
nucleation centers for the CO domains and effectively
pin the domains during stripe condensation. Since the
average lattice structure of LSNO has translational sym-

metry over a lengthscale smaller than CO wavelength it
cannot, in self, pin the CO domains into reproducible
locations. In charge-ordered cuprate LBCO, the speckle
pattern of CO domains loses memory after the sample is
heated across the transition temperature from the low
temperature orthorhombic (LTO) phase into the high
temperature tetragonal (HTT) phase [35]. Thus, it is
expected that the pinning landscape for CO in LBCO
is constrained by twin boundaries created by the LTO
structural distortion. In LSNO, the lattice remains in the
HTT phase and no long-range LTO distortion is observed
[49]. However, short-range stripe-related distortions have
been reported to persist up to high temperatures [50]. It
is possible that either these distortions, or local defects
due to Sr-related doping disorder, determine the pinning
landscape of LSNO in a similar manner.

The pinning effect of CO to the structural disorder
also evinces the relevance of EPC in nickelates, which
has been illustrated by the discovery of phonon anoma-
lies and nematic behaviors in LSNO [51–54]. It has
been argued theoretically that without EPC CO will re-
main dynamic and not order [32]. For structure-driven
CO, phonons soften to zero energy and drag the valence
charge along with it to form spatial modulations. Here,
however, phonons are softened by a maximum of 20%
[52], and charge stripes are formed to reduce Coulomb
interactions. EPC helps pin pre-formed charge stripes
according to the lattice symmetry, promoting the static
CO. The presence of EPC further couples the CO do-
mains to structural disorder, which strengthens the CO
against thermal fluctuations. Consequently, when CO
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and SO lose correlations progressively upon heating or
cooling away from 70 K, the fluctuations of CO speckles
increase more slowly (Fig. 3).

SO behaves in a different way. During the formation
of SO, the spins can align either parallel or antiparallel
to their quantization axis. This would disrupt the repro-
ducibility of SO speckles after thermal cycling across TSO
even if the domain walls are in the same place (Fig. 4).
Moreover, the rotational degree of freedom provides an
additional fluctuation channel to the ordered spins, fa-
cilitating the loss of SO stability when driven away from
70 K (Fig. 3). This is in line with the observation of spin
reorientation in LSNO at low temperatures [24, 27, 40].

The robustness of CO stability and its pinning to the
lattice demonstrate that the stripe order in LSNO is
charge driven. This directly verifies prior theoretical pre-
dictions based on Landau theory of coupled charge and
spin order parameters [30] and may reflect that stripe-
order is charge-driven in general. Our approach will be
extendable to other materials and even to other degrees of
freedom such as orbital order, bringing a powerful means
to disentangle the formation mechanisms of intertwined
ground states.
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