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The 7×7 reconstruction of the Si(111) surface represents arguably the most fascinating surface 
reconstruction so far observed in nature. Yet, the atomistic mechanism underpinning its formation 
remains unclear after it was discovered sixty years ago. Experimentally, it is observed post priori so 
that analysis of its formation mechanism can only be carried out in analogy with archaeology. 
Theoretically, density-functional-theory (DFT) correctly predicts the Si(111)-(7×7) ground state but is 
impractical to simulate its formation process; while empirical potentials failed to produce it as the 
ground state. Developing an artificial neural-network potential of DFT quality, we carried out 
accurate large-scale simulations to unravel the formation of the Si(111)-(7×7) surface. We reveal a 
possible step-mediated atom-pop rate-limiting process that triggers massive non-conserved atomic 
rearrangements, most remarkably, a critical process of collective vacancy diffusion that mediates a 
sequence of selective dimer, corner-hole, stacking fault and dimer-line pattern formation, to fulfill the 
7×7 reconstruction. Our findings may not only solve the long-standing mystery of this famous surface 
reconstruction but illustrate the power of machine learning in studying complex structures. 
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The study of solid surfaces is of paramount fundamental and practical importance, as a variety of 

devices involves directly the properties of film/substrate surfaces, where “the interface is the device” 

[1]. Therefore, it is essential to understand how surface structures, at the level of monolayers of atoms, 

arise, evolve and affect many surface-based exotic properties. Typically, crystalline surfaces relax 

and/or reconstruct into a structure differing from bulk, but usually an understandable simple structure. 

One exception is the famous Si(111)-(7×7) reconstruction [2], which is considered one of the most 

intriguing surface structures in nature, representing a rare case of 2D complex system [3,4]. As the 

ground state of Si(111) surface, the 7×7 reconstruction is called “dimer-adatom-stacking fault” (DAS) 

reconstruction [5] to signify the three types of defects in the reconstructed surface [See Fig. 1(a)]. 

Despite the huge amount of attention devoted to this surface [2,5-18], however, its formation 

mechanism has remained largely a mystery for more than half a century. 

 

The challenge to unravel the mystery of Si(111)-(7×7) reconstruction is twofold. Experimentally, it 

is observed post priori [10-12] so that analysis of its formation mechanism is not very clear. 

Theoretically, all the current simulation methods have not been both accurate and efficient enough to 

model its formation processes. The extremely large size and great complexity prohibit a full length- 

and time-scale ab initio calculation, while all the known classical potentials failed to produce it as the 

ground state [19] [see Fig. 1(b)]. For these reasons, the Si(111)-(7×7) reconstruction has served as a 

touchstone system to benchmark the advancement of newly developed experimental tools [2,5-15] 

and computational methods [16-18] in characterizing its properties. 

 

Recently, machine learning has brought us a powerful tool to solve unprecedentedly complex 

structures and problems [20,21], including developing more accurate interatomic potentials to 

simulate materials properties, such as Si potential [19]. In this Letter, we demonstrate the 

development of a high-dimensional artificial neural-network (ANN) potential [22,23] that accurately 

reproduces the ab initio potential-energy-surface in a wide range of complex Si structures, including, 

most notably, the Si(111)-(7×7) ground-state structure and energies [see Fig. 1(b) and Methods] [24]. 

Empowered by the accuracy of this ANN potential, coupled with the efficiency of climbing image 

nudged elastic band (CI-NEB) [25] and molecular dynamics (MD) methods, we are able to 

significantly enlarge the length scale (~17,000 atoms) and extend the time scale (about several 

nanoseconds) of simulations to carry out an in-depth atomic-scale mechanistic study of Si(111)-(7×7) 

surface. Most remarkably, we reveal a possible step-mediated atom-pop rate-limiting process that 

triggers massive non-conserved atomic rearrangements, via an intriguing process of collective 
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vacancy diffusion to facilitate a sequence of selective dimer, corner-hole, stacking fault and dimer-

line pattern formation, all featured in the 7×7 reconstruction. 

 

 Our ANN potential is developed by using the open-source atomic energy network (ænet) package, 

we made some modifications and constructed the ANN potential [22,23,32]. We found the choice of 

2 hidden layers with 10 nodes is sufficient to generate the ANN potential of single element Si as 

desired. And, in principle, the activation function should be a step-like signal function, but in practice 

the hyperbolic tangent function ( ) is chosen in our study. The transformation of the 

atomic coordinates into a set of symmetry functions  is necessary, 32 Gaussian symmetry 

functions are chosen to construct our ANN potential, i.e., 16 radial and 16 angular symmetry 

functions have been used as the input nodes. To train our ANN potential, about 14,000 DFT atomic 

configurations, ranging from 8 (bulk Si) to 300 atoms [Si(111)-(5×5) DAS reconstructed surface; note 

the (7×7) DAS structure was not included in the training but predicted later.], were used as the 

reference database. In order to ensure the accuracy and transferability of the ANN potential, 12,600 

(90%) randomly chosen configurations in the database were used for training the ANN potential and 

the rest 1,400 (10%) were used for testing [26]. The root-mean-square-error (RMSE) of the 

optimization (testing) set is about 3.9-4.1 (4.0-4.1) meV per atom, which is confirmed to give a highly 

accurate ANN potential. We demonstrate the accuracy of the developed ANN potential for various Si 

systems, especially for the (001) and (111) Si surface properties. We compare our ANN Si potential 

with the existing empirical potentials and the other machine learning potential GAP [19]. In general, 

our ANN potential performs better than most other empirical potentials, especially for the Si surface 

properties, in comparison with DFT results. More details of methods and training processes can be 

found in Supplementary Information [24]. 

 

    The bulk-terminated Si(111)-(1×1) surface is metastable with one dangling bond per surface atom, 

inducing a large compressive surface stress, i.e., -0.125 eV/Å2 (-0.090 eV/Å2) in the surface (sub-

surface) layer [27]. To relieve such stress, the 1×1 surface reconstructs into a stable surface under 

tension, and the ground-state 7×7 reconstruction is mainly attributed to an optimal balance between 

surface stress and charge transfer [16-18], adopting very complex atomic rearrangements, i.e., the 

DAS model incorporating the following key features: (i) dimers in the third layer, (ii) adatoms on 

surface, and (iii) stacking fault between the second and third layer in half of the unit cell, forming a 

faulted half unit cell (FHUC) and unfaulted HUC (UHUC) [5,18], as shown in Fig. 1(a), with several 
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hundreds of atoms per unit cell. Other DAS-type 3×3, 5×5 and 9×9 reconstructions have also been 

observed under non-equilibrium conditions [12].  

 

   We note that it is impossible to directly simulate, on-the-fly, the (1×1)-to-(7×7) reconstruction even 

with the efficient ANN potential we developed, due to both the length- and time-scale limitations. 

Therefore, one hopes to piece the whole picture together step by step, by drawing from the 

experimental information combined with extensive search of atomistic processes of the lowest 

activation energy barriers (AEBs). It is well established the 7×7 surface has an atomic density ~6% 

lower than the 1×1 surface. For the reconstruction to occur, it is a prerequisite that the (1×1) surface 

finds a way to lose atoms. Thus, we first set to find the lowest-AEB pathways for an atom to leave the 

(1×1) surface. We started from the clean surface, and found that the AEB for such processes is ~1.50-

2.27 eV/atom (Fig. S1 [24]), after searching different atom-pop positions and pathways. This range of 

AEB agrees well with DFT calculations (Fig. S1 [24]), indicating a process unlikely to occur. It is 

also consistent with the experiments showing that the 7×7 reconstruction usually appears and expands 

around surface steps [6,28] and thermodynamically steps can act as both source and drain for the 

“additional” Si atoms required for the conversion between the 1×1 and 7×7 phases [6].  

 

Therefore, we turned our attention to the roles that steps may play in assisting the atoms kinetically 

to pop out of the surface. We found that when steps are present, the AEBs for atoms popping out of 

surface is significantly reduced from ~1.50-2.27 eV/atom to ~0.90 eV/atom (equivalently the AEBs 

for vacancy formation), suggesting that the step-mediated atom-pop process represents the rate-

limiting step (Process I in Fig. 1(c)) to trigger the 7×7 reconstruction. The popped-out atoms may 

leave a large number of vacancies behind in both the upper and lower terraces. Then, a critical 

process of collective vacancy diffusion (Process II) away from the steps is found to mediate a 

sequence of events of dimer, corner-hole, stacking-fault and dimer-line formation, as schematically 

illustrated in Fig. 1(c). 

 

     Experimentally, high-temperature (~700 oC) annealing is used to achieve large-area clean 7×7 

domains [12], where the parent metastable 1×1 surface, instead of more stable 2×1 surface, is seen 

transforming into the 7×7 surface. Mostly, the [11-2] and [-1-12] steps are observed, called U- and F-

type step facets [29] respectively (Fig. S2 [24]). Accordingly, we focus on two step configurations: 

one separating a 1×1 lower and upper terrace and the other separating a 1×1 lower and a 7×7 upper 

terrace. In the former case, only the U- step exists, and three dominant atom-pop pathways [red, blue 
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and green arrows in Fig. 2(a)] are identified. Two for a surface atom [labeled 1 and 2 in Fig. 2(a)] 

popping out of the lower terrace next to the step edge, and one [labeled 3 in Fig. 2(a)] out of the upper 

terrace. They all have a low AEB of ~0.9 eV/atom [see Fig. 2(b)]. For the more complex case with 

the 7×7 upper terrace, another three pathways are identified [see Fig. 2(c)]. Two are similar to the 

case in Fig. 2(a) [atom 1  and 2 , blue and red arrows in Fig. 2(c)] next to the straight portion of the 

step edge; the other one to the atom [atom 4 and orange arrows in Fig. 2(c)] popping into the “corner 

hole” of the 7×7 upper terrace. The AEBs are ~ 0.9 eV/atom for atom 1  and 2 , and ~ 0.8 eV/atom for 

atom 4 [see Fig. 2(d)], respectively. Note that it is only the U-step in Fig. 2(c) that mediates a low-

barrier atom-pop process, but not so for the F-step (the lowest AEB is found much higher, ~1.62 

eV/atom). This agrees with the experiment that the (7×7) reconstruction is preferred around the U- 

over the F-step [13]. 

 

There must be a number of atoms popping out around steps to create sufficient vacancies, so that 

the latter will induce a ~6% areal atomic density decrease after diffusing into the terrace. This means 

that the pop-out atoms can easily diffuse along and away from the step edge, which is indeed what we 

found. For example, the popped atoms may diffuse with a barrier of 0.71-0.76 eV/atom along the step 

edge (Fig. S3 [24]) or ~1.20 eV/atom over the step edge (Fig. S4 [24]); the latter agrees well with 

experiment (~ 1.14 eV/atom) [30]. A collection of the popped atoms sticking to the step edge would 

lead to growth (retreat) of the step for the 1×1 and 7×7 surface conversion, as observed [28]. It will 

also leave a “vacancy row” behind in the lower (upper) terrace next to the step [see Fig. 1(c)]. The 

experimental observation that large 7×7 domains are terminated by step and/or disordered domains 

[12] apparently supports the existence of many vacancies. 

 

Upon vacancy creation, an immediate consequence is that the atoms surrounding the vacancy are 

exposed becoming under-coordinated, which will spontaneously (i.e., without barrier) form dimers 

(see Fig. S5 [24]). Then, a key is to confirming that the optimal dimer density along the step edge 

corresponds to the required corner hole formation that defines the periodicity of the 7×7 

reconstruction. Hence, we have determined the optimal dimer periodicity with the lowest energy to be 

N=3 (Fig. S6 [24]), which corresponds exactly to the periodicity of 7×7 reconstruction. A different 

dimer periodicity would result in a different periodicity of reconstruction, such as 5×5, under different 

experimental conductions. Meantime, the vacancies may diffuse towards the middle of terrace. In 

doing so, they must not only lower the atomic density, but also lead to formation of other key 7×7 
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structural features, including dimers, corner holes and stacking faults. However, although a variety of 

low-ABE pathways, as low as 0.6 eV/atom (see Figs. 3-4 below), are found for vacancy diffusion, 

none of them can individually induce the desired features. This triggered us to try out collective 

vacancy diffusion processes. Interestingly, we found that the collective vacancy diffusion away from 

the step can indeed be the next critical kinetic process responsible for desired atom reorganization, 

including stacking fault in half of the area and dimer-line to define the boundary between the FHUC 

and UHUC. Such critical processes are found for all step configurations. Below, we use the case of 

1×1 lower and upper terraces to elaborate in detail. 

 

    We first discuss the kinetic processes in the FHUC, as shown in Fig. 3. The initial vacancy 

positions are marked as black-dashed circles in Fig. 3(a), forming the first row of vacancies [VR1 in 

Fig. 3(a)] next to the step edge. As they diffuse into the terrace, they exchange positions with the first 

row of surface atoms [AR1 in Fig. 3(a)] to form a new row of vacancies [VR2 in Fig. 3(b)], with an 

AEB of 0.62 eV/atom. Meantime, the displaced AR1 will relax to the most stable positions (solid-

cyan circles), forming a new row of AR1  in Fig. 3(b). The AEB of the atom-vacancy exchange is the 

lowest we found in all possible pathways we tried. As a result, a row of alternating 8-atom ring and 

double-5-atom-ring structures form in the lower terrace along the step edge, as shown in Fig. 3(b). 

Next, the VR2 will continue to diffuse, exchanging with AR2 in a similar manner [Fig. 3(b)]. With 

two steps of collective vacancy diffusion, some exposed third-layer atoms become under-coordinated 

to form dimers [D1 in Fig. 3(b)], with an energy gain of ~1.58 eV/dimer [31]. Furthermore, one can 

see from Fig. 3(c) that the dimerization, induced by every two steps of collective vacancy diffusion, 

also induces a pair of alternating 8-atom-ring and double-5-atom-ring structures along a “diagonal” 

direction at 60o with the step edge that defines the boundary of 7×7 unit cell, while a periodic array of 

corner holes form naturally along the step edge, by reconstructing a pair of 8-atom and double-5-atom 

rings into one 12-atom ring.  

 

    The red-trapezoidal-frame area in Fig. 3(c) indicates what happens overall after the first two steps 

of vacancy diffusion. We note that two vacancies will diffuse out of this area into the UHUC, to be 

discussed later. Then the next two steps of vacancy diffusion will lead to another smaller trapezoidal 

area [blue in Fig. 3(c)] with two more fewer vacancies. Meantime, a new pair of 8-atom ring and 

double-5-atom-ring bridged with a dimer form in the diagonal direction. Finally, after four times of 

two-step diffusion, a pair of 8-atom rings from two diagonal directions [orange arrows in Fig. 3(d)] 
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will meet and coalesce into a 12-atom ring forming a corner hole with an AEB of ~0.27 eV/atom. 

This completes the formation of FHUC. We note that the vacancy diffusion pathway identified above 

is not a simple exchange of atom-vacancy positions. Instead, while the vacancy [e.g., A site for an fcc 

stacking in (111) direction] occupies the atom position (B site) [black arrow in Fig. 3(a)], the 

displaced atom moves to a new position (C site) [green arrow in Fig. 3(a)] rather than the original 

vacancy position (A site). Then, as the vacancies sweep through, a stacking fault is left behind [Fig. 

3(d)].  

 

Now we discuss a direct exchange of vacancies and surface atoms in the UHUC, as shown in Fig. 4. 

To begin with, the first row of vacancies (VR1) exchange directly (green arrows) with the first row of 

atoms (AR1) [see Fig. 4(a)], which is found to have the lowest AEB (~0.60 eV/atom). The exchanged 

atom first occupies a position next to an open twelve-atom ring structure and then pop to the step 

edge [blue arrow, similar to that in Fig. 2(a)] with an AEB of ~1.01 eV/atom (Fig. S7 [24]). Then, 

similar exchange processes replicate with more vacancies feeding from the FHUC to the UFUC as 

mentioned above.  The newly arrived vacancies exchange with the atoms, diffuse along the dimer line, 

and then pop to the step edge. Finally, after eight steps (two a group) of collective vacancy diffusion, 

a UHUC is formed. At the very last step, there will be a new vacancy row of 7 vacancies [VR8 in Fig. 

4(b)] next to three dimers and in between two corner holes, same as the initial vacancy configuration 

in Fig. 3 next to step edge, to begin the next round of formation of a FHUC. It should be noted that, in 

real situation, especially at very high temperature, the vacancies may not strictly diffuse together as a 

row, but we expect the “net effect” that many vacancy diffusion is likely equivalent to what we 

proposed as “collective” diffusion. In other words, collectively they diffuse into the desired end 

configurations as we described. 

 

We further note that there are two different types of edge sites within one period between the two 

corner holes for the vacancy to start diffusion towards middle, which divide the surface into two 

separate diffusion areas subject to the local C3 symmetry and result in two different stacking 

sequences as discussed. The FHUC assumes an ABB  stacking [Fig. S8(a)] [24], and the UFUC keeps 

the original ABC stacking [Fig. S8(b)] [24]. The proposed vacancy diffusion processes in 

UFUC/FHUC is consistent with the observation of atom-vacancy pairs in the experiment [11]. As the 

exchanged atoms pop to the step edge, they may diffuse out of the newly formed 7×7 unit-cell.  
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We emphasize that since the two elemental steps, i.e., step-mediated atom-pop and collective 

vacancy diffusion, are identified with the lowest-AEB pathways, they constitute kinetically a highly 

feasible path towards the (7×7) reconstruction. Importantly, the physical manifestations derived from 

the proposed mechanism are all consistent with the available indirect experimental evidence, noting 

that experiment can only observe the reconstruction post priori. Furthermore, we have checked the 

final substructure formed at the end of the proposed processes, a partial (7×7) surface without 

adatoms, by the ANN potential compared with DFT [Fig. S11] [24], showing excellent agreement.  

 

     To conclude, by developing an artificial neural-network potential, we provide a possible 

mechanistic solution to the puzzle of Si(111)-(7×7) surface. We suggest experimental confirmation of 

our predictions by a more detailed study of the roles of “steps” and “vacancies”. The series of kinetic 

processes we reveal is equally applicable to the Si(111)-(3×3), (5×5) and (9×9) reconstructions. 

Broadly, both the defect mediated lowering of energy barriers and the collective mass transport could 

be general kinetic mechanisms underlying the formation of other large-surface-unit-cell 

reconstructions as well as complex structures that involve transport and rearrangement of hundreds of 

atoms/molecules. We foresee the artificial-neural-network-potential approach to unravel more 

complex structures and processes in the future. 
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FIG. 1. (a) Top (upper panel) and side views (lower panel) of Si(111)-(7×7) surface unit cell (black-

dashed line). Red, yellow and purple balls represent dimers, adatoms and rest atoms, respectively. (b) 

Calculated surface energies of the Si(111) surfaces with a series of DAS reconstructions, in 

comparison with results of DFT and other potentials, and the latter are extracted from Ref. [19]. The 

inset is a zoom-in plot to better show the comparison between DFT, ANN and GAP potentials. (c) 

Illustration of the two main kinetic processes proposed for (7×7) reconstruction. Process I: step-

mediated atom-pop process (indicated by two cyan arrows), which leaves behind a row of vacancies 

(small blue circles) next to the step. Process II: collective vacancy diffusion (indicated by six purple 

arrows) towards the center of terrace, converting the surface into the (7×7) reconstruction consisting 

of faulted (labeled “F”) and unfaulted (“U”) half unit cells. 
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FIG. 2. (a) and (c) Atom-pop pathways around different steps. Cyan, purple and wine balls represent 

the second-layer, third-layer atoms of 1×1 (upper and lower) terrace and the surface-layer atoms of 

7×7 upper terrace, respectively. Arrows indicate directions of atom popping or diffusing. Purple 

arrows indicate dimerization process. (b) and (d) Energy barriers for the kinetic processes shown by 

arrows in a and c, respectively, in corresponding colors. Insets show local structures of initial, 

transition and final states.   



 

 

11

 
FIG. 3. (a) and (b) First and second steps of vacancy diffusion in FHUC, respectively. Black circles 

indicate the original vacancy positions. Black arrows indicate vacancy diffusion directions and green 

arrows illustrate surface atoms relaxing to new positions after exchanging with vacancies. VR1(2) 

and AR1(2) indicate the first (second) row of vacancies and surface atoms next to the step, 

respectively. Red and blue areas mark the eight-atom and double-five-atom rings, respectively. Purple 

arrows depict dimerization. (c) Structure resulting from the first and second steps of collective 

vacancy diffusion. Red and blue trapezoidal frames display the areas within which the vacancies 

diffused in two steps. Green, brown and yellow areas mark the corner hole, eight-atom and double-

five-atom rings along the diagonal directions (orange arrow), respectively. (d) Final structure of 
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FHUC. Dark-green area marks the twelve-atom ring forming a corner hole. Inset shows the transition 

state and energy barrier for vacancy diffusion indicated by arrows in (a), (b).  
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FIG. 4. (a) Vacancy diffusion in UHUC. Gray and yellow areas mark the UHUC and FHUC, 

respectively. Black circles, black arrows and green arrows are the same labels as Fig. 3. VR1(2, 3 and 

8) and AR1(2 and 7) represent the first (second, third and eighth) row of vacancies and first (second 

and seventh) row of atoms next to the step, respectively. The large green arrow indicates the 

sequential vacancy diffusion processes leading to VR8. (b) Final structure of UHUC. VR8 becomes 

the “VR1” for the next round of diffusion. 
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